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LIST OF TERMINOLOGY 

Action Logic: A set of remedial actions. This includes proper actions for each initiating 

event under each system operating condition. 

Action / Remedial Action: A switching or a control on the network executed by the system 

operator or automatic device to prevent the system failure resulting from the initiating 

event and post-initiating event. 

Emergency Bids: A price a load serving entity asks for having a certain amount of its load 

cut to meet power system emergency (system failure imminent) need. 

Event: One or a series of large disturbances happens to the power system, including system 

element failure and network switching. 

Initiating Event: An event consisting of one or more stage of large disturbance that happens 

to the normally operated power system (no element at fault or out of service), with an 

uncertainty. Initiating event is called contingency by power system engineers. 

Post-initiating Event: An event that happens as a result of protective relay's action following 

the Initiating Event. In this research work, protective relays are assumed to work as 

designed at the post-initiating event stage without any failure. 

Cascading Event: An event consisting of a sequence of large disturbances, among which 

disturbances that occur later in the sequence are the results of earlier ones in the 

sequence. Cascading event includes both the initiating event and the post-initiating 

event. 

Load Serving Entity: An entity that buys electric power from the wholesale market {power 

market) and then sells to retail customers. 

Operating Condition: A profile of how the energy is flowing in the electric power network. 

It includes the generation level of each generator, the load level at each load bus, the 

power flowing through each branch (line and transformer), and the voltage at each 

bus. 

Power Market: The wholesale market where the power producers sell power and the load 

serving entities buy power. 
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Power System Protection system: The automatic system in electric power network that 

detects and thus isolates certain faulted (e.g., short circuit) element (e.g., a line, 

transformer, or generator) in order to keep the rest of the network intact. 

Protective Relay: The device {relay) that implements the protection function. When triggered 

by certain electric measurements of the power network, it sends a single to a breaker 

to isolate the faulted element. The protection system for one element may contain 

multiple relay types. 

System Protection Scheme: A System Protection Scheme or Remedial Action Scheme 

(RAS) is designed to detect abnormal system conditions and take predetermined 

corrective action (other than the isolation of faulted elements) to preserve system 

integrity and provide acceptable system performance [1]. 

System Failure: Uncontrolled and unplanned losses of system integrity, which include 

uncontrolled system islanding, uncontrolled loss of major loads, uncontrolled loss of 

major system elements. System failure is identified by system topological change. 

System Abnormal Condition: Abnormal system conditions that could lead to a system 

failure. This includes low voltages, line over-loads, transient dynamics, and other 

abnormal conditions. System problem is identified as the value change of analog 

variables of the power system. 
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1 INTRODUCTION 

Transmission system reliability has been the major concern of the electric power 

supply, since transmission systems connect the generation sources with demand centers. The 

interconnected transmission system must be able to continuously and reliably operate within 

elements and system thermal, voltage, and stability limits, while supplying adequate power to 

customers. According to North American Electric Reliability Council (NERC) planning 

standard [1], electric systems must be planned to withstand the more probable forced and 

maintenance outage system contingency (initiating event) at projected customer demand and 

anticipated electricity transfer levels. Extreme but less probable contingency (initiating 

event) should also be evaluated and accounted for by risks and consequences analysis. 

Different measurements are utilized to achieve adequate reliability level: 

• More transmission lines are constructed to enhance the transmission capability. 

• Faster and more sophisticated protection and control devices are armed and better 

coordinated to protect certain elements of power network. 

• Coordinated wide area protections are equipped to prevent system-wide failures, 

which could not be accounted for by normal protection and control devices. 

The modern power system is supposed to be very robust under these sophisticated and well-

coordinated measures. 

1.1 The need for a new emergency response system 

Despite all the measures taken to enhance the overall system reliability, there are 

always some unpredictable rare events that will lead the system to catastrophic consequences 

- large area blackouts. And, as the society relies more and more on electricity supply, the 

interruption cost has increased dramatically [2], Good examples of these events are listed 

below. The actual costs for these events are hard to determine due to very large but uncertain 

indirect economic impact. 

On July 2, 1996, a short circuit on a 345-kV line in Wyoming started a chain of 

events leading to a breakup of the western North American power system. Five islands were 
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formed with controlled and uncontrolled load shedding, uncontrolled generation tripping, and 

total blackout covering southern Idaho [3]. 

On July 3, 1996, a chain of events similar to what occurred on July 2, 1996 began to 

unfold. The IPC (Idaho Power Company) system operators, recognizing the potential for an 

incident similar to that of July 2, manually shed about 1,200 MW of demand in the Boise 

area. This action prevented a repeat of July 2's voltage collapse in the Boise area and 

contained the disturbance to the IPC system [4]. 

On August 10, 1996, a major failure occurred in the Western Systems Coordinating 

Council (WSCC) system, resulting in break-up into four islands, with loss of 30,390 MW of 

load affecting 7.49 million customers in western North America [5], 

On March 11, 1999, a blackout caused the loss of 25 GW of load and was the most 

severe of the Brazilian electric system history. This disturbance affected as much as 74 

million people, for as long as four hours [6], 

On January 2, 2001, a major grid collapse occurred in northern India, in which over 

13000 MW of generation was lost for many hours. 

With current normal protection and wide area protection devices, these complicated 

events are typically too rare to plan for yet too severe to defend against once they happen. In 

the meantime, these catastrophic events produce such severe impacts that to ignore the 

probability of its occurrence and not to think of defense strategy is unacceptable. A new 

emergency response system being capable of preventing and mitigating these rare-but-severe 

events is of urgent necessity. 

1.2 Characteristics of high consequence disturbances 

To develop this emergency response system, it would be beneficial to identify 

common characteristics of these high consequence disturbances. According to [4] and [7], the 

following characteristics are identified. 

Timeframe 

These high consequence disturbances usually involve a relative long timeframe. We 

investigated cascading events in North America based on major blackout data of 1996-1999 
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from [4], and results indicate, of 14 cascading disturbances, 8 occurred in duration of 30 

seconds or less, 1 occurred in duration of between 30 seconds and 5 minutes, and 5 occurred 

in duration of more than 5 minutes. For the latter 6 events, early effective remedial action 

could prevent the catastrophic consequence. This characteristic demands accurate long-term 

simulations during system planning and remedial action design procedure. This is neither 

required nor implemented in current practices. 

Importance of operator knowledge on unfolding cascading events 

Because of the long-term feature of these large disturbances, early operator action 

could have prevented the catastrophic consequence. Consider the disturbance that occurred 

on July 3, 1996 as an example. The initial event of this disturbance is quite similar as that of 

July 2. The operator, with the experience of the previous day, knew what would happen if no 

action were taken. He then took effective action to shed load in the Boise area, and the 

disturbance impact was mitigated with only a small number of customers affected. 

Protective relay performance 

Another characteristic is that protective relay undesirable operation is a major 

contributor to these 'unpredictable' rare events. For example, during both the 2 July and 10 

August blackouts of WSCC system, undesirable generator tripping was the main contributing 

factor to the severity of the disturbances [8], The undesirable tripping was the result of poor 

designs of generator over-excitation relay, generator over-excitation limiters, and phase 

unbalance relay for three-phase thyristor bridge rectifiers. In fact, according to the statistical 

result of large disturbances in North America from 1979 to 1995 [7], protection problems 

contribute to about 63% of large disturbances. This fact demands accurate relay modeling in 

simulations during remedial action design procedure. 

Initiating events 

Another characteristic is that, almost all these large system disturbances are initiated 

by some very unusual initiating events, which are too rare to be included in the normal 

initiating event set during system planning or remedial action design procedure, although 
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NERC do require considering some extreme initiating events. To make a new emergency 

response system work, a much larger initiating event set is to be investigated. 

To draw a conclusion, low probability, high consequence events do happen to power 

systems. At the same time, the catastrophic consequences are not inevitable. Early 

appropriate action is able to prevent such outcomes. An emergency response system being 

able to predict the emerging problem and take early action to defend power systems is 

required and is feasible. The key to the success of this system is its ability of capturing most 

system failure types, which would require conducting long-term simulation with accurate 

relay modeling. A much larger initiating event set is also the success key. We refer to such a 

system as Emergency Response System (ERS). 

1.3 An analogy of ERS and TCAS 

To better understand what ERS means to a power system, an analogy is provided in 

Figure 1.1. This figure shows the analogy of the ERS and the Traffic Alert and Collision 

Avoidance System (TCAS), which is used for air traffic control. When two or more aircrafts 

are going to pass too close to each other, TCAS can detect this emergency situation, sound 

alarm to each pilot, and provide corresponding action suggestion (to descend or climb) to 

each pilot to avoid the midair collision. 

1.4 Adaptiveness of ERS to power market operations 

While the main motivation for designing this new ERS system is to defend power 

systems against rare-but-severe events, the structure of this new system enables it to be more 

adaptive to the ongoing power market operations as well. The cost of remedial actions 

becomes more important with the presence of power markets because of the emphasis on 

financial competitiveness. Market participants have begun to bid for emergency measures 

[9], For example, the bids shows for what cost how much of its load could be cut off from the 

system. This cost information continuously changes in real time and should be counted for 

when determining optimal remedial actions. 
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Action by 
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Airplanes 
getting 
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to each 
other 

b. The TCAS system in air traffic control system 

Figure 1.1 Analogy of the ERS and the TCAS 

Under this circumstance, fixed remedial action logics designed by offline calculation 

may no longer be regarded as appropriate. ERS implements real-time automatic action logic 

design, which is based on real-time system data, including market data. The remedial action 

identified by ERS is desirable for power market operations. 

1.5 Contribution of this work 

In this dissertation, an ERS system is designed, including its physical structure and 

the approaches to implement its key parts. The core of this system design, a generalized 

remedial action logic design process, is developed. A demonstrative automatic intelligent 
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action logic design system is constructed to test the ERS system feasibility and its efficiency 

of predicting and preventing catastrophic outcomes. Corresponding test results are provided. 

Major improvements of this ERS system over traditional system protection plan are 

identified. In addition, some important issues regarding implementing the ERS system are 

addressed; some guidelines are provided for the key implementation steps; some algorithms 

are suggested and tested by numerical results. 

1.6 Organization of the document 

In Chapter 2, the basic concepts of System Protection Schemes (SPS) are introduced 

and most recent improvements on SPS design are reviewed, since the ERS system is evolved 

from SPS systems. Chapter 3 examines the evolution path of SPS design, derives the 

framework of the ERS from there, and shows how this new framework makes major 

breakthroughs over traditional SPS/defense plan. Chapter 4 develops a generalized remedial 

action logic design mechanism, which is the core of the success of this ERS system. A 

software-based automated intelligent action logic design system constructed by the author is 

presented in Chapter 5. The test results show the feasibility and effectiveness of this new 

ERS system. Chapter 6 describes how to implement some other key elements in the new 

system, addresses important implementation issues, and presents numerical test results of 

suggested algorithms. Chapter 7 closes this document by identifying the main contributions 

of this work and suggesting future works. 
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2 REVIEW OF SPS 

The ERS proposed in this work is closely related to System Protection Schemes 

(SPS), because both systems need similar power network inputs and produce similar outputs 

- remedial actions for defending power systems against rare system disturbances and 

maintain system integrity. ERS can be regarded as an advanced SPS or advanced SPS-

formed defense plan. 

2.1 SPS and defense plan 

A definition of SPS is given in [1]: A System Protection Scheme or Remedial Action 

Scheme (RAS) is designed to detect abnormal system conditions and take predetermined 

corrective action (other than the isolation of faulted elements) to preserve system integrity 

and provide acceptable system performance. 

The purpose of installing SPS is to prevent the loss of network integrity characterized 

by a combination of the following power system performance problems: 

• Transient angle instability; 

• Small signal angle instability; 

• Frequency instability; 

• Short-term voltage instability; 

• Long-term voltage instability; 

• Cascaded tripping. 

These problems are further described in [10]. 

The major control actions of SPS to contain the above problems include: 

• Generation rejection; 

• Turbine fast valving; 

• Gas turbine / pumping storage start-up; 

• Actions on the AGC such as setpoint changes; 

• Under frequency load shedding (UFLS); 

• Under voltage load shedding (UVLS); 
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• Remote load shedding; 

• HVDC fast power change; 

• Automatic shunt switching (shunt reactor/capacitor tripping or closing); 

• Dynamic braking or braking resistor; 

• Controlled opening of interconnection / area islanding; 

• Tap changer blocking and setpoint adjustment; 

• Quick increase of generator voltage setpoint. 

Reference [11] describes all of these actions. 

A basic classification of SPS is based on their control variables, by which the SPS is 

classified as response-based or event-based [11]. Response-based SPS are based on measured 

electric variables, and basically include UFLS and UVLS. Event-based SPS are designed to 

operate upon the recognition of a particular event. 

Reference [12] discusses the benefits of using SPS from the point of view of utilities 

and customers respectively, while [11] has a more conclusive statement about the benefits: 

• Improve power system operation; 

• Operate power system closer to their limits; 

• Increase power transfer limit while maintaining the same level of system 

security; 

• Compensate for delays in the construction program; 

• Increase the power system security particularly towards extreme initiating 

events leading to system collapse. 

It is hard to identify a definite date of birth for SPS due to the close relationship 

between SPS and regular protection devices. Reference [13] reports on the first survey on 

SPS applications. In that survey, a total of 93 schemes were reported in operation in 18 

utilities located throughout the world. A later survey was reported in [14], where a total of 

111 schemes were reported. 

SPS is also regarded as a part of a complete defense plan against different identified 

extreme initiating events. Defense plans could be defined as a set of coordinated defensive 

measures whose main purpose is to ensure the overall power system is protected against 

major disturbances and multiple contingency events [11]. One defense plan includes a group 

of related SPS devices. The ERS system developed in this work is one type of advanced 
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defense plan. The main difference between the ERS and traditional defense plan is in the 

action logic design method of event-based SPS units, which is shown in the following 

chapters. For convenience, unless explicitly stated, "SPS" in this chapter refers to event-

based SPS. 

References [15], [16] and [17] introduce defense plans in Canada, France and Russia 

respectively. Reference [18] introduces multiple defense plans including one in Romania. 

Some SPS implementation and experiences in Canada and America can be found in [19]-

[24]. SPS examples in South Africa, Ireland, Yugoslavia and United Arab Emirates are 

introduced in [25], [26], [27] and [28]. Two SPS from Australia are reported in [29] and [30]. 

Online calculation based SPS are implemented in Japan ([31], [32]) and China ([33]-[35]). 

2.2 Typical traditional SPS mechanism and their performance 

Most existing traditional SPS use the mechanism described in Figure 2.1. Numerous 

calculations are performed offline for many pairs of pre-specified initiating event and 

operating condition; corresponding optimal actions are determined for each pair to maintain 

the integrity of the system; an action table is established for all initiating event and operating 

condition pairs. This table is stored in the SPS before it is put online. Once a initiating event 

happens to the power system, the device looks up the initiating event and the pre-fault 

operating condition in the table, finds the pre-determined action for this pair, and then sends 

out a control signal to execute the action. Undesirable system impacts should be prevented as 

designed. 

Traditional SPS performance could be extended in the following areas: 

1) Adaptiveness to operating conditions. Since all calculation is done offline, 

traditional SPS must match real-time operating condition to what is stored in the 

table, which is pre-assumed. This involves a "mis-match" error. 

2) Adaptiveness of initiating event set. Because of the large computational burden, 

the initiating events they can consider are limited. 

3) Properness of action. Lacking flexibility on the first two areas, traditional SPS 

sacrifices its accuracy to gain its adaptiveness to various operating conditions. 

The remedial actions designed for traditional SPS are generally conservative. 



www.manaraa.com

10 

Contingency set 

Operating condition set 
Offline 
calculation 

Online table 
looking up Real-time operating condition 

Event 

Action 

Power system 

Stored look-up 
table 

Calculation, 
establish look-up 
action table 

Figure 2.1 Typical SPS mechanism 

2.3 New progress in SPS design 

2.3.1 Adaptiveness to operating conditions 

To address the traditional SPS' weakness in area 1 above, some engineers have 

developed new SPS that is adaptive to operating condition, utilizing online real-time system 

data for the decision-making procedure. Reference [32], [33] and [35] introduced 

implementation of adaptive remedial actions based on online security assessment. They all 

use direct method and distributed computation to speed up the calculation. Direct method is 

used in initiating event screening and/or action selection process. The uncertainty of the 

operating condition is reduced. The remedial action each for initiating events is determined 

online but before the disturbance. 
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2.3.2 Adaptiveness to initiating events 

References [36]-[39] utilizes Phaser Measurements Unit (PMU) to achieve adaptive 

SPS. The main philosophy is that, with the help of PMU, we may detect and identify the 

initiating event and corresponding system dynamics, thus eliminate the dependence on 

models and enumeration of initiating events. Reference [36] uses energy function based 

method and reference [37] uses One Machine Infinite Bus (OMIB) based direct method to 

predict the system stability performance from the initial system trajectory. Reference [38] 

does the same thing but by using a pattern recognition technique. Reference [39] specially 

deals with voltage instability. It uses real-time data from PMU to calculate the real-time 

power transfer margin at different buses, considering voltage instability. 

2.3.3 Closed-loop control 

Reference [40] proposes an extension to methods described above - closed-loop 

control. This approach is similar to that of [36]-[38] and also relies on PMU, but its control 

action is not necessarily a one-time action. After each action, it keeps tracking the system 

trajectory using PMU to determine whether the action is sufficient and another layer of action 

is necessary. 

2.3.4 Intelligent techniques 

Intelligent system is a common way people seek to make SPS adaptive. Reference 

[41] uses neural network to train the SPS on its action selection. References [42]-[43] use 

fuzzy technique to provide the operator with decision support. References [38] and [44] use 

pattern recognition to recognize disturbance, predict the instability, and then find a remedial 

action. Data mining and temporal machine learning are used in [45] to cope with 

uncertainties in power systems. 

Although these intelligence methods are to some extent adaptive to different pre-fault 

scenarios, modeling data, or fault location, the training process usually needs large amount of 

offline calculation results. And, while the validation of their implementation can be checked 

by simulation, it is not guaranteed that a special case will not be missed. 
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2.3.5 Dynamic Decision Event Tree (DDET) [461 

Dynamic Decision Event Trees (DDETs) [46] are storage mechanisms for events, 

system responses, and remedial actions that may occur with a power system. In DDET, 

scenarios are comprised of initiating events followed by a succession of sequential events 

and decisions through time. The DDET root node corresponds to the normal (no event) 

operating conditions as indicated by the current system state. Branches emanate from the root 

node to first tier of nodes. These first tier nodes represent initiating events, from which 

emanates a tree of additional nodes and branches that represent succeeding events that occur 

as a result of the initiating event. 

The DDET is similar to the event tree, except for two fundamental differences. First, 

it includes decision nodes where it is effective and possible to take actions that avoid or 

mitigate the event consequences. Second, it is dynamic; it grows according to a set of 

branching rules, and the tree structure, branch probabilities, consequence values, and 

decisions are updated as necessary to reflect changes in the physical network. 

The word 'dynamic' has three implications here. First, the tree for a system is 

different for different system configurations, so that it changes with time. Second, the system 

performance as events unfold is governed by differential as well as algebraic equations. Time 

domain simulation is necessary to construct the tree. The third implication, which is also an 

attractive feature of DDET, is that the growth and updating processes occur continuously 

with as much computing power as is available. In addition, trees can be stored. Therefore, 

when a cascading event begins to unfold, the amount of available information in the DDET 

can be very large, and the speed with which the action is taken is limited only by the 

efficiency of the search necessary to find the location in a tree corresponding to the particular 

situation at hand. 

DDET is a basic tool used in implementing ERS. There are two essential questions 

related to DDET : (a) How to construct it? (b) How to use it? In regard to the first question, 

how to construct DDET, there are 4 essential features: 

1) Simulation engine: Here the main issues are modeling (long-term dynamics and 

protective relay) and integration method. 

2) Event selection: Initial events are selected. 

3) Detection of impending system failures. 
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4) Identifying optimal remedial actions. 

We provide only a brief summary of (2) in this work as other ISU researchers have well 

addressed this topic. We address the modeling issue in (1), and we focus our efforts on (3) 

and (4). In addition, we address the second question: how to use DDET? 

In this dissertation, any single DDET is stored in the form of a table as shown in 

Table 2.1. This table is filled out during online action logic design process and stored in 

DDET database. When some disturbance happens, the ERS will search the DDET by looking 

up this table and find the optimal action to take. Alternative action is stored to make ERS 

adaptive to real-time action cost information, and its usage is introduced in Chapter 3. 

Table 2.1 Example of DDET 

Initiating event No. System failure type Optimal action Alternative action 
1 Failure 1 Action [1,11 Action [1,21 

... ... ... ... 

n Failure n Action [n,ll Action[n,2] 
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3 EMERGENCY RESPONSE SYSTEM FRAMEWORK 

This chapter describes the framework of the ERS. At first a comparison of different 

system protection paradigms is presented, and certain SPS attributes on which different 

paradigms perform differently are identified. An ERS conceptual design is then developed in 

order to achieve better performances on these attributes. 

3.1 SPS, defense plan, and ERS 

As introduced in Chapter 2, SPS can be classified into two categories: response-based 

SPS and event-based SPS. A defense plan is composed of a group of coordinated SPS, 

including both response-based SPS and event-based SPS. Generally, these SPS units are 

distributed and are set separately with offline calculation without a central control center. 

Like a defense plan, ERS also includes a group of coordinated SPS units. However, 

these SPS units are different from the traditional SPS in three ways. First, these units are 

coordinated by a control center and receive updated settings and action logics from the 

control center constantly. Second, ERS uses a more advanced mechanism for the remedial 

action logic design for event-based SPS units, and this is the major contribution of ERS 

design. Third, the ERS makes action suggestions to the system operator for long-term system 

problem. This feature is not available in tradition SPS based defense plan. 

In this dissertation, we focus on the development of the event-based remedial action 

logic design mechanism, because that is the main characterizing difference between the ERS 

and the traditional SPS/defense plan. The ERS is designed this way because it is always 

preferred that more disturbances could be mitigated by event-based remedial actions rather 

than response-based remedial actions. To understand this, let's review the purposes of 

installing response-based SPS: 

• There may occur some unexpected initiating events not included in the 

initiating event set and/or some unexpected operating conditions. Should these 

initiating events and/or operating conditions occur, response-based SPS acts to 

mitigate the impacts. 
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• Due to inaccuracy of power system components modeling, the simulation 

used to design the remedial action does not always give the right solution. 

Under such a scenario, power systems also rely on response-based SPS to 

mitigate the impacts. 

Ref [39] and [48] partially addressed these issues. 

The drawbacks of response-based SPS are: 

• The time for response-based SPS to take remedial action is usually much 

longer than event-based SPS, since it has to wait for specific power network 

measurement to reach a certain triggering level. For example, wait for the 

voltage at a bus to drop to a triggering value. This drop is the result of some 

initiating event and can happen much later than this initiating event. 

Generally, an earlier action can save the power system with less cost, and 

some system failure can only be prevented if an early stage action is taken. 

• It is almost impossible to precisely evaluate the right amount of action to take 

for response-based SPS. The reasons are: (1) Only local measurements are 

used to determine the amount of action to take during real-time. Pre-assumed 

system data were used in determining the settings for action amounts. This 

determines that the action designed cannot be guaranteed to be appropriate. 

(2) The action is taken in a 'trial' manner. That is, no simulation is done 

before applying it to verify the effectiveness of this action under this scenario. 

As a result, the action taken by a response-based SPS is always conservative, 

and more than one layer of actions should be designed to establish a closed-

loop control to make up this problem. However, this multi-layer action design 

further prolongs the process of taking remedial actions and reduces the 

effectiveness of these remedial actions. 

As a result, for a defense plan, it is desirable that more system wide disturbances (more 

initiating events under more operating conditions) can be captured by fast and accurate 

event-based SPS, thus defense the power system at an early stage. 
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3.2 SPS evolution and SPS attributes 

3.2.1 SPS evolution 

No matter what kind of SPS it is, the general decision mechanism is shown in Figure 

3.1. Note that the action logic design process can be done either offline or online. However, 

the mechanisms of obtaining system data, detecting and using disturbance information, and 

designing remedial action logic have always been improving. 

optional 

Action 

Operator 

Disturbance 

System data 

Decision 
support Simulations 

Action logic design 

Figure 3.1 SPS decision-making mechanism 

Table 3.1 shows major mechanism comparisons along the evolution path of SPS 

technologies: 

• Most existing SPS belong to 'Traditional SPS' category. They are either 

response-based SPS or event-based SPS. The major characteristic of 

traditional SPS is that all the simulations and action logic designs are done 

offline. The system data used for logic design is offline assumed. A look-up 

table is then created for online use. Real-time operating condition may differ 

from those assumed data, and 'mis-match' errors may occur while matching 

real-time conditions to what is stored in the look-up table. 

• Online calculation based SPS as presented in [32], [33] and [35] are referred 

to here as 'Advanced SPS'. They have been extended from the traditional SPS 

to use real-time system data for developing the action logic. The simulations 
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Table 3.1 Comparison of different protection paradigms 

T  - I  I  r rr Increasing level of effectiveness w 

Traditional SPS 
Emergency 

Response System 

(ERS) 

Advanced 

Comparison 

Aspects 

Response-

based SPS 

Event-based 

SPS 
Advanced SPS 

Emergency 

Response System 

(ERS) 

Emergency 

Response 

System (AERS) 

System 

condition 

for logic 

design 

Offline and 

assumed 

Offline and 

assumed 

Partial real-time 

data, partial 

assumed 

Real-time data Real-time data 

Initiating 

event set 
N/A Fixed 

Fixed, very 

small 

Flexible, very 

large 

Any initiating 

event 

Logic 

design time 

frame 

Offline Offline Online, periodic 
Online, Flexibly 

scheduled 

Online, after 

initiating event 

Simulation 

work load 
Heavy Very heavy, Relatively light Medium Light 

Simulation 

speed 

requirement 

Slow Slow Fast Fast 
Faster than real

time 

and logic design process are done online. This avoids the operating condition 

'mis-match' in Traditional SPS. 

• ERS is the work to be introduced in this document. One major characteristic 

of the ERS is that its initiating event set is dynamic and can dramatically 

increase in size. The purpose is to defend the power system against a much 

larger set of system events. To accomplish this online, the logic design 

process is generalized and automated. 
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• Advanced Emergency Response System (AERS) is the ultimate goal of 

SPS/defense plan design. With the fast computation and communication that 

may be possible in the future, the simulations and remedial action design can 

be performed after the initiating event using real-time operating condition 

data, and the execution of the action would still be early enough to mitigate 

the catastrophic outcomes. 

3.2.2 SPS attributes 

Identifying the main attributes of SPS will help to provide a design basis for ERS. In 

this section, SPS attributes are identified. After the ERS conceptual design is presented in the 

next section, the ERS improvements over traditional defense plan on these attributes are 

identified. 

There are four main attributes for SPS as listed below. Performances of different SPS 

on these four attributes are mainly determined by the first two aspects compared in Table 3.1. 

1) Adaptiveness to network configurations and operating conditions 

Whether the action logic is developed based on real-time configuration and 

operating conditions or on assumed configuration and operating conditions 

determines how adaptive the SPS is to network configurations and operating 

conditions. 

2) Adaptiveness to initiating events 

SPS are often designed to trigger for initiating events that involve multiple 

outages of power system components. The number of these initiating events that the 

SPS is prepared for and the sum total of their probabilities determine how adaptive 

the initiating event set is. 

3) Effectiveness of system failure detection during simulation 

The percentage of system failure types are detected by the simulation engine 

of the SPS design defines the effectiveness of its system failure detection function. 

For example, protection system operations and long-term system instability are not 
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considered during traditional SPS logic design process. As a result, system failures 

caused by these problems cannot be captured by traditional SPS. As mentioned in 

Chapter 1, these system failure types comprise a large portion of power system large 

disturbances. 

4) Adaptiveness to online changing criteria factor for action seletion 

The criteria for choosing optimal action are according to the action's 

effectiveness, feasibility, and economic cost (see Section 4.4). One example of 

changing criteria factor is the economic information such as emergency load-cut bids 

from Load Serving Entities (see Section 1.4). Whether the remedial action 

design/selection process accounts for real-time economic information determines how 

adaptive the SPS is on power market information. Traditional SPS action design does 

not have this feature. 

3.3 ERS conceptual design 

3.3.1 The conceptual design 

To make major breakthroughs on the four attributes of SPS design, we propose the 

following ERS conceptual design with new mechanisms that make all these possible. We 

also design a supplemental physical structure for implementing this ERS system, which 

integrates the advantages of centralized and decentralized layouts. The conceptual design of 

ERS is illustrated in Figure 3.2. We describe it in terms of its two basic modes of operation: 

Anticipatory computing and Response. 

3.3.2 Tasks during anticipatory computing mode 

During normal operating condition (when there is no disturbance), there are 7 main 

computation tasks running online: 

Management 

This task coordinates all the communication between other tasks. It also monitors key 

ERS features, including the available computation resources, which task is running on which 
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t - - \  hour, -1 day, -1 week 

A 
Anticipatory computing mode 
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system 
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condition. 
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event tree 

Coordinate, 
Co-scheduling 

Calculation for 
future operating 
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event tree 

Forecasting 
technique 

Power system Feedback 

Remedial 
action 

Current tree 
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construction) 

Tree locating 

Dynamic Decision-Event Tree Database 

Decision 
support 
for 
operator 

Tree Searching 

Most 
approximate 
tree(s) in 
database 

Oper. Cond. 1 Tree 1 
Oper. Cond. 2 Tree 2 

Oper. Cond. N TreeN 

Figure 3.2 ERS conceptual design 

CPU, and the information flow. It also provides a graphical user interface (GUI) to interact 

with the system analyst and operator. It is similar to the manager module in [47]. 

Forecasting 

ERS forecasts the future operating conditions and predicts those of high-risk. The 

result provides indications for an early DDET tree (see Table 2.1) construction so that a more 
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prepared tree will be ready when the high-risk period cornes. This is a critical feature 

associated with DDET, which makes the ERS adaptive to network configurations, operating 

conditions, and initiating events. This computation, combined with DDET storage and 

retrieval mechanism, ensures that there is always a prepared tree that can provide 

corresponding remedial action/suggestion. 

Initiating events selection 

The initiating event selection task identifies initiating events of high and intermediate 

likelihood that may result in a catastrophic outcome. These events are then put into the 

initiating event set and passed to the 'tree construction' unit for processing. These events 

comprise the first tier of nodes (first column in Table 2.1) following the root node (original 

operating condition) in the DDET. The method to select these initiating events is introduced 

in Chapter 4. The initiating events selection method ensures that most likely catastrophic 

initiating events are included in the DDET so that ERS is much more adaptive to system 

initiating events than a traditional defense plan. 

Scheduling 

The scheduling problem requires identification of how to use available computational 

resources; at any point in time, the decision must be made: "what to compute next?" There 

are two types of scheduling tasks: 

Scheduling within the same timeframe 

After initiating event selection (either for the current condition or some future 

condition), a task-scheduling function ranks the chosen events. The events are studied 

by this rank and appropriately located in the DDET. 

Scheduling between timeframes 

This is a higher-level scheduling function that allocates computer resources 

between tasks for current operating condition and tasks for future operating 

conditions. 
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The overall objective of task scheduling is to maximize the 'readiness' of the system 

to catastrophic events, where 'readiness' is described in Section 3.6. A proposed scheduling 

method to achieve this objective is introduced in Chapter 6. By maximizing the 'readiness' of 

the system, ERS achieves high adaptiveness to system initiating events. 

Tree construction 

DDET is like an event tree, but with the capability of continuous growth, in the 

direction of both breadth and depth. Also, the DDET includes decision nodes. 

Implementation of these actions could be automated for transient problem and could be 

provided to the system operator as a suggestion for long-term system problems. So, the main 

computation burdens of DDET construction are system failure detection and remedial action 

identification. 

System failure detection 

A system failure refers to uncontrolled and unplanned losses of system 

integrity, which include uncontrolled system islanding, uncontrolled loss of major 

loads, uncontrolled loss of major system elements. System failure detection is 

supported by time domain simulation. During simulation, only system failure triggers 

the action identification function; minor impacts on power system are not targets for 

ERS actuation. The method of detecting system failures and the requirements of the 

time domain simulation are introduced in Chapter 4. 

Remedial action identification 

After a system failure is detected, the next step is to identify remedial actions 

to prevent it. This process includes three components: identify the right action type, 

identify action candidates, and determine the optimal action amount. The types of 

actions, introduced in Chapter 2, include load shedding, generator tripping, fast 

valving, dynamic braking, and controlled islanding. The techniques involved in this 

action logic design process are addressed in Chapter 4. 

There are two possibilities for constructing the DDET. Before constructing the 

tree, ERS checks the DDET database to determine whether a tree constructed under 
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the same or very similar operating condition exists. If it exists, the computation task is 

to expand the tree to embrace a broader class of initiating events. If a tree does not 

exist, a new tree is constructed. By this procedure, DDET continues to expand in 

order to include a large number of system initiating events, and it makes ERS much 

more adaptive to system initiating events, including those severe rare events. 

Alternative actions 

When there is a cost associated with the remedial action and some alternative 

actions are available, we should identify and store these alternative actions in DDET 

as well. This is for real-time action cost consideration. For example, load serving 

entities have started to bid for emergency measures [9]. That is, during emergency 

situation, for what price how much load could be shed to mitigate system emergency. 

Since this real-time cost information changes often, the optimal action is not 

necessarily fixed. Should the cost bids from market participants change, all the 

alternative actions should be reexamined to determine the current optimal action 

(with least cost). This reexamination process does not take much computation time 

since no time domain simulation is involved. These simple algebra calculations can 

be done almost instantly after new emergency bids become available. The real-time 

emergency cost information is stored in market database and published on ISO's 

public websites. This adaptive feature was not accomplished by traditional SPS 

design. 

Tree locating 

Tree locating is one task that keeps running during normal operation. It tracks the 

moving trajectory of system operating condition and locates a tree (or trees) in the database 

which is constructed under the closest operating condition. Thus, at any particular time, ERS 

knows the "best" tree(s) in the DDET database in terms of operating condition. This task 

saves time for response-mode operation and ensures that a tree is always available at any 

time. This feature also increases ERS' adaptiveness to system configurations and operating 

conditions. 



www.manaraa.com

24 

Optimal action update 

This task is triggered when any new emergency bids become effective in power 

market database. Since these emergency bids could change the cost of cost-sensitive remedial 

actions (mainly and load shedding), an update is necessary to determine the current optimal 

actions once cost factors change. Since alternative actions were also identified during tree 

construction process, this update could be done instantly. However, this is a significant 

improvement over tradition SPS design, and is highly desirable in current deregulated 

electric power system. 

Following some period of online operation, a database of well-constructed DDET 

trees will be ready for use. At that time, the main computational task shifts from new tree 

construction to expansion and updating of existing trees. 

3.3.3 Tasks during response mode 

When an initiating event occurs, at first the ERS checks whether this event is 

included in the tree that was under construction right before the event and using the most 

recent normal operating condition. If that is the case, ERS locates the initiating event in the 

tree and follows the path to find the corresponding impact and suggested remedial action. 

The impact and suggestion are provided to the system operator for his decision support for 

long-term system problems. For transient system problem, the remedial action is carried out 

immediately to prevent the severe impacts. 

If the initiating event is not in the most recent tree, the ERS uses the "best tree(s)" 

that the "tree locating" task provides. ERS provides the impact and suggested remedial 

actions to the operator in the same way as above, but it also provides the operator with the 

differences between the recent operating condition and the operating conditions that these 

trees are based on. The differences are measured by the differences of major values 

characterizing the operating condition, such as generator output, load level, and tie line flow. 
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3.4 ERS Improvements 

Based on the ERS conceptual design above, we summarize the improvements that 

ERS makes over the traditional SPS/defense plan on the four SPS attributes. 

Adaptiveness to network configuration and operating conditions 

Traditional SPS action logic is developed offline using computer models with 

assumed network configurations and operating conditions. A partial description of the 

network configuration and operating condition is used as input to the SPS, and SPS action 

logic is developed accordingly. It is intended that this partial description be enough to fully 

capture the inputs necessary to maintain effective action logic, but there are always some less 

important features of the network configuration and operating conditions that are excluded 

from SPS input but still impact action logic effectiveness. Traditional SPS action logic is not 

adaptive to changes in these remaining features. As a result, its effect on system performance 

may differ from what was intended. 

ERS overcomes this drawback and is adaptive to network configuration and operating 

conditions. Unlike traditional SPS, ERS obtains real-time system data and determines action 

logic based on it. As a result, the action taken is more effective. 

As ERS, Advanced SPS also utilizes real-time data for action logic design, and is 

more adaptive than traditional SPS. However, there is a 'dead period' associated with 

Advanced SPS. That is, once the system has a big change in its topology because of 

switching, the action logic must be refreshed. Suppose that the time to refresh the action 

logic is 5 minutes. If an initiating event occurred during this 5-minute period, no up-to-date 

action logic would be available. Ironically, this beginning period of a new system 

configuration is more likely to have initiating events occur, considering that the switching 

may be undesirable. What is being done today is that a backup action logic table as in the 

traditional SPS will be activated during this period. Thus, Advanced SPS is not adaptive 

enough to operating conditions. ERS avoids this 'dead period' inherent to Advanced SPS 

because the ERS always has a prepared pre-constructed tree available for unexpected outage 

conditions. 
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Adaptiveness to initiating events 

Both traditional SPS and Advanced SPS use a fixed initiating event set. It is not an 

adaptive initiating event set and can only capture a very limited number of events. In ERS, 

however, the DDET keeps growing as long as computation power permits. There are a large 

number of events that can be captured by the DDET. Furthermore, DDET can be stored and 

retrieved. So, as similar operating conditions occur, the DDET continues to grow over days, 

weeks, months, or even years and become quite full. This event tree is much more adaptive 

than the initiating event set in traditional SPS and Advanced SPS. 

Effectiveness of system failure detection during simulation 

As introduced in Chapter 1, many power system large disturbances are long-term in 

nature, and protection system operation is a major contributor to cascading disturbances. ERS 

system makes improvement on incorporating long-term simulation and detailed protective 

relay modeling. As a result, it is able to provide a much more effective system failure 

detection mechanism, which is crucial to a successful SPS design. This simulation issue will 

be introduced in Chapter 4 and some test results can be found in Chapter 5. 

Adaptiveness to real-time market information 

With online real-time information interchange with power market database, and with 

alternative actions available in DDET, ERS is able to identify the optimal remedial action 

based on real-time costs in a very fast manner. It is not accomplished by traditional SPS 

design. 

3.5 Architectural design for ERS 

The architecture layout of defense plans can be basically classified into two types: 

decentralized and centralized architectures. Reference [49] proposes a decentralized system 

architecture, based on System Protection Terminals (SPT). The SPTs are installed in power 

system substations, where measurements are taken and actions performed. They are tied 

together with a high bandwidth communication system as shown in Figure 3.3. 
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SPT: System Protection Terminal [49] 

Figure 3.3 Decentralized architecture based on SPT 

SPT gets inputs of local power system measurements, as well as remote 

measurements and signals from other SPTs. It also receives GPS (Global Positioning system) 

time synchronizing signals and operator setting inputs. SPT sends output of its measurements 

and power system information to other SPTs and to the operator. It also sends control action 

command to substation control system when a remedial action is deemed as necessary. 

Reference [50] lists several possible design architectures for defense plans. Emphasis 

was given to a 'Multi-layered architecture' (Figure 3.4). There are up to three layers in this 

architecture. The bottom layer is made up of PMUs (Phasor Measurement Unit), or PMUs 

with additional protection functionality. The next layer up consists of several local protection 

centers, each of which interfaces directly with a number of PMUs. The top layer, System 

Protection Center, acts as the coordinator for the local protection centers. This architecture is 

generally a centralized architecture and integrates protection devices and EMS (Energy 

Management System, which monitors the power system data in real-time). It is proposed 

because a comprehensive solution needs the whole system information from EMS [50]. 

Reference [39] uses this architecture to implement its defense plan. 
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Figure 3.4 Multi-layered architecture for defense plan 

ERS uses a centralized architecture design. However, it utilizes similar local units as 

SPTs in [49], for these local units are interconnected. These SPTs are located at substations. 

They can perform both event-based and response-based remedial actions. Figure 3.5 shows 

the architecture of an ERS system. Figure 3.6 shows the information exchanges associated 

with one SPT in the ERS system. 

EMS 

SPT SPT 

SPT 

SPT 

SPT SPT 

ERS 
center 

Figure 3.5 Centralized ERS architecture design 
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Figure 3.6 SPT information exchange in ERS system 

Information flow within the ERS is as follows: 

• EMS to ERS Center: Results of state estimation, weather information, market 

bids information, and other related information. 

• ERS Center to EMS: Collected local measurements, initiating events 

occurred, actions taken, real-time phase information from PMUs. 

• ERS Center to SPT: Updated remedial action logic design. 

• SPT to ERS center: Initiating events occurred, actions taken, local real-time 

measurements, phase measurements. 

• SPT to SPT: Local real-time measurements, initiating events occurred, 

actions taken. 

This architecture design brings the following features to the ERS system: 

• Centralized remedial action design use complete system data to guarantee the 

propemess of the remedial action; 

• ERS Center constantly updates the optimal actions at SPT according to the 

changes on system configuration, operating condition, and market bids. 

• SPT takes action in a fast manner. With stored updated action table, usually it 

only needs locally detected initiating event as input to take the right action. 

When local information is not enough, additional information can be obtained 

from closest neighbor SPTs. 

• Downward information contains action table, which is represented by very 

limited amount of data and can be transferred quickly. 
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• Local measurements provide EMS state estimator with reliable data, even 

with phase information. This largely improves the state estimator 

performance. 

The hardware design and communication protocol should be standard. This is an 

essential requirement to establish an open system. An open system is able to easily 

communicate and interact with outside systems. It also has high scalability. 

3.6 ERS system optimal operation objective 

During the operation of ERS, our optimal performance goal is to maximize our 

'readiness' to those high probability catastrophic events for both the current system condition 

and forecasted high-risk future conditions. That is, of what portion (in probability) of all the 

potential system-failure-causing initiating events the ERS has analyzed. 

Advanced SPS presented by [47] has a similar objective. However, it didn't consider 

the different probabilities for different initiating events. The readiness index of that system is 

in terms of how many initiating events out of the total number in the initiating event set are 

analyzed. 

One way to understand the ERS objective is per the graph shown in Figure 3.7. In this 

graph, we put all the initiating events in a two-dimension plane. One dimension represents 

the probability of the event and the other dimension, severity, represents the event's impact 

on power system. We put their original distribution in the graph at left and the distribution 

after some time's action logic design process in the graph at right. An initiating event will 

move down in the direction of less severity after been processed by ERS, because some 

action is available for containing this event and thus alleviate the impact. Then, our objective 

can be clearly described as to move the events out from the dangerous area in a shortest time, 

or, in a certain time, move as many events out from the dangerous area as possible. Priority 

should be given to events with high probabilities. 

In Figure 3.7, events with extremely low probability are not pictured because they 

will not be in the initiating event set for analysis. It is clear that after some time, more events 

move from dangerous area to safe area, and the system becomes less vulnerable. 
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4 GENERALIZED ACTION LOGIC DESIGN PROCESS 

Our design of the ERS has all computation performed online though not in real-time. 

This requires a high computational speed, and as a result, the process must be automated, 

without human intervention. This chapter describes the design for automating online 

remedial action identification. 

This automatic process is comprised of three stages: initiating events selection, 

system failure detection, and remedial identification, as illustrated in Figure 4.1. The output 

of this process is an optimized remedial action for each deserving event in the initiating event 

set. These actions include both current optimal actions and alternative actions, as discussed in 

Section 3.3. 

System 
failure 
information 

Power 
system 
data . 

Initiating 
event set 

Remedial 
actions Initiating 

events 
selection 

System 
failure 
detection 

Remedial 
action 
identification 

Figure 4.1 Three stages of automatic action logic design 

In this chapter, we describe the approach used in selecting initiating events based on 

the work reported in [51][52][53]. For system failure detection, we specify the requirements 

for a simulation tool and propose a generalized system detection mechanism. A general 

formulation for action identification is described. 

A list of mostly used terminology is presented at the beginning of this dissertation. 

The terms frequently used in this chapter are: initiating event, post-initiating event, system 

failure, and system abnormal condition. An alternative definition for system failure is in term 

of bus voltage magnitude and frequencies. For example, "System failure is when one or more 

bus voltages fall below 0.7 pu for more than 1 second (i.e., a non- recoverable voltage) or 

system frequency deviates by more than 0.5 Hz for more than 10 seconds (i.e., a non-

recoverable frequency excursion). One feature of this alternative definition is that it is a pure 

subset of the system failures. It contains no conditions that are not failures; when it is 
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satisfied, it is certain that the system is failed. We prefer our definition because it is a 

complete set of system failures. Thus, we need not be concerned that some highly 

undesirable conditions would receive no attention. 

4.1 Initiating events selection 

As introduced in [11], the current criterion used in industry for selecting initiating 

events in SPS design is to satisfy system planning rules or other design criteria. For example, 

NERC planning standard [1] defines 4 categories of system normal and initiating event 

conditions, for which planning is to be done. However, for categories C and D, which 

involve component multiple outages or/and cascading outages, it is not clear what is a 

complete set of such initiating events. Although a guideline is given in [1] to find such 

credible multi-outage initiating events, utilities and Independent System Operators (ISO) use 

their experiences to find a very limited set of extreme initiating events to study. This very 

limited initiating event set is used because offline studies require much human intervention 

and judgment, resulting in a high cost of human labor. 

As will be addressed later in this chapter, ERS automatically performs the complete 

system study (initiating event selection, system failure detection, and remedial action 

identification) without human intervention, thus increases the speed of this action logic 

design process while reducing human labor. Another major improvement inherent to ERS is 

the expansion of the number of initiating events studied. As long as the computation power 

permits, more and more initiating events are studied and corresponding action are identified 

for each resulting in unacceptable performance. 

In processing a large number of initiating events, ERS uses risk to prioritize them. 

High-risk initiating events are those with non-negligible probability and severe system 

impact. ERS identifies high-risk initiating events based on estimated probability and severity. 

Probability estimates are made in terms of order of magnitude (i.e., "probability order") 

based roughly on the number of independent failures necessary to initiate the event. Severity 

estimates are made in terms of number of components removed from service for the given 

initiating event. Evaluation of probability and severity in this way requires (a) selection of a 

single fault location and (b) topological assessment of adjoining substation configurations to 
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determine the number of components to be removed for different levels of protection system 

reliability. Step (b) is performed using the breaker-switch data as normally available in an 

Energy Management System (EMS) topology processing applications, and processing that 

data using a network-search algorithm based on graph theory. This algorithm and associated 

implementation was developed by Chen in [51] and is not described further here. 

This approach results in identifying two kinds of high-risk initiating events: 

1) Initiating events resulting in two or more component outages without any 

protection failure. Such events are high risk because a single failure (e.g. a fault) 

results in outage of more than one component. 

2) Initiating events resulting in outage of 3 or more components from a single fault 

plus a single protection/breaker failure. Such events have lower probability than 

those of category (1) but generally higher severity. 

A third class of high-risk initiating events are called common mode and include, for 

example, loss of two lines on the same right-of-way. Such events are identified by inspection 

and are placed with high priority in the initiating event set. 

Simultaneous independent events are not assessed as a result of their low probability 

and their extremely large number. An example would be two simultaneous unrelated faults. 

Such events have lower probability than that of category (2) above (fault plus 

breaker/protection failure). It is emphasized that the above constitute the initiating events 

only. Subsequent events, e.g., post-initiating event, are identified through simulation. 

4.2 System failure detection 

The basis for system failure detection is a time domain simulation engine. Without an 

accurate simulation result, failure detection criteria are meaningless. The first part of this 

section will specify the requirements for the ERS simulation engine. A sample simulation 

engine constructed by the author is presented in Chapter 5. The second part of this section 

introduces a generalized relay based system failure detection mechanism used by ERS. This 

failure detection mechanism is intelligently designed so that it runs automatically. 
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4.2.1 ERS simulation requirements 

Implementation of the ERS simulator requires distributed computation to provide 

sufficient analysis speed. This is not a requirement for the simulator itself. However, it 

naturally increases the preparedness level enabled by the ERS. 

There are three basic requirements for the simulator. 

1) Long-term simulation ability: This requirement is consistent with the industry's 

perspective of SPS design [11]. However, it is noteworthy that the literature does 

not reinforce this, suggesting that practical SPS design deviates from this 

perspective. Reference [54]-[58] describe some simulation techniques of long-

term dynamic response. Properly modeling Under Load Tap Changers, load 

dynamics, turbine-boiler dynamics, and AGC are essential to long-term 

simulation. 

2) Transmission system protective relay modeling: Any transmission protective 

relay that could lead to tripping of components following an initiating event must 

be represented in the simulator. Some protective relays that must be modeled are: 

• Over-current relay. Improperly adjusted over-current relay could operate 

during a stressed but not faulted system operating condition. This is 

undesirable. For example, many utilities set the pickup of instantaneous over-

current relays for a remote end fault at 115% to 125% of the maximum 

symmetric load current flow with all ties closed at the remote end, and this is 

not always a valid setting [59] because the relay could operate under 

extremely high loadings. 

• Impedance relay. An impedance relay could also operate during a stressed but 

not faulted system operating condition, which is undesirable. This is caused 

by the high current and low voltage that is typical of a stressed operating 

condition. Such an occurrence contributed in the WSCC August 1996 system 

failure [8]. An impedance relay could also operate undesirably during system 

dynamics, such as during a strong swing. Blocking impedance relay during 

the transient can be adopted as a remedial action. This practice is discussed in 

IEEE Standard for Transmission Line Protection [60]. Blocking out-of-step 
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relay as a remedial action is used in the WSCC system at Malin substation 

[61]. 

• Over-excitation relay. The over-excitation relay is identified as a major 

contributor to the 1996 WSCC blackouts [8]. Low system voltage forces 

generator to over-excite, activating these relays at several plants resulting in 

generation tripping. Tripping generation further weakened system reactive 

power support, further decreasing bus voltages. Generator controls should 

limit the excitation level instead of trip the generator during such scenarios. 

• Over-excitation limiters. Unlike other relays listed here, over-excitation 

limiter doesn't contribute to the cascading events, yet it needs to be modeled 

because it plays an important role during simulation. It can be regarded as a 

control element during simulation instead of a relay. 

• Out-of-step relay. Out-of-step relay could trip either a tie line or a generator 

[10]. It can be implemented by impedance relay. Out-of-step relay operates 

during a system unstable condition. It is used by ERS as one indication of 

system failure. 

• Underfrequency load shedding. UFLS is modeled because it sheds load. 

Large amount of load shedding is regarded as system failure by ERS. 

• Undervoltage load shedding. UVLS is modeled for the same reason as UFLS. 

• Traditional event-based SPS. ERS treats existing SPS as a normal protective 

relay as it is activated by a measured network value. The action taken by SPS 

usually has a significant impact on the power system and must be modeled in 

simulation. 

Other relays can also be modeled. The above relays are listed because they play 

major roles during system wide disturbances. When manpower is limited for relay 

modeling, priority should be given to these relays. 

3) A "simulation backup" function is also required for ERS simulation. This feature 

provides that the simulator records some simulation scenarios as the simulation 

progresses. If afterwards we want to insert an action at some moment and 

examine its effect on the result, we need not repeat the simulation. Instead, we can 

'backup' to the moment we want to insert the action by restoring the saved 
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snapshot, apply the action, and then resume the simulation from that moment. 

This feature does not consume tremendous amount of storage because only 

several snapshots are stored by simulation and they are discarded after a remedial 

action is identified for this initiating event. 

4.2.2 Generalized system failure detection approach 

In designing traditional SPS and advanced SPS as introduced in [15], [16], [32], and 

[33], the problems with the specific system (including angular instability, line overload, and 

low voltage profile) are known a priori. During online (Advanced SPS) or offline (traditional 

SPS) design the simulators specifically detect those predicted problems. If these problems 

occur, corresponding actions are identified to contain them. This approach does not 

generalize for the case when problems are not known a priori. In addition, since protective 

relays are not modeled in the simulation, some potential problems (for example, undesirable 

relay operations) are not detected by these simulators. Unlike Traditional SPS and Advanced 

SPS, ERS uses a general approach for system failure detection by properly modeling the 

protection system. 

A system failure, no matter it is a large loss of load, loss of a major element, or an 

uncontrolled islanding, results from the actions of protection systems. Therefore, the ERS 

uses the relay actions as indications of upcoming system failure. According to their results, 

relay actions are classified as the following three categories, and corresponding system 

failure detection criteria are identified: 

1) Branch Trip 

Relays producing this result: Line or transformer protections and out-of-step 

relays. 

System failure to detect: Uncontrolled/unacceptable system islanding. 

Upon the detection of a branch trip by a protective relay, the simulator checks 

whether major islands are formed. If the system is islanded, the occurrence of either 

of the following two situations is regarded as a system failure: 

• The generation-loading imbalance in any of the islands exceeds a 

specified threshold; 
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• The islanding formed is not allowed by system operation rules. 

2) Load Shedding 

Relays producing this result: UFLS, UVLS. 

System failure to detect: Large amount of load loss. 

Upon the detection of a load shedding by a protective relay, the simulator 

checks whether the total load loss exceeds a specified percentage of total system load. 

If the answer is yes, a system failure is detected. 

3) Generator Tripping 

Relays producing this result: Generator protections and out-of-step relays. 

System failure to detect: Large amount of generation loss. 

Upon the detection of a generator tripping by a protective relay, the simulator 

checks whether the total generation-load imbalance exceeds a specified percentage of 

total system capacity. A large imbalance will cause large load loss eventually. 

Independent of whether the protective relay actions produce system failures directly, 

the scenarios of these relay actions should be saved during the simulation. Once it is 

identified (through failure detection within the simulator) that one of them is the cause of 

some system failure, corresponding remedial action will be identified to prevent it according 

to this stored cause of this protective relay action (Figure 4.2). 

To prevent the final system failure, we need to prevent this original abnormal 

System 
failure 

Relay 
operation 

System 
becomes 
more stressed 

Original 
system 
abnormal 
condition 

condition (e.g., low bus voltages) as the root cause at the first place. 

Figure 4.2 Save all the relay action scenarios for future trace-back 
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4.2.3 Conclusion 

In conclusion, with this generalized new system failure detection approach, ERS is 

able to detect system failures without human intervention, thus making the whole process 

automatic, which is essential for online implementation. At the same time, with long-term 

simulation and detailed relay modeling, it is even better than traditional human processed 

system detection because a much larger number of system failure types, which used to be 

'hidden' during traditional system failure detection, can be detected. 

4.3 Remedial action identification 

For a certain initiating event, with the ERS system failure detection function, system 

failure is identified automatically. The failure information is then provided to the 'remedial 

action identification' unit for generating appropriate remedial action. 

4.3.1 System failure detection and remedial action identification 

System failure detection is not only a pre-step of remedial action identification; it is 

also an integral part of this action identification, since it is the tool to verify the effectiveness 

of identified actions. The complete ERS system computation arrangements for processing 

one initiating event (constructing one branch of one DDET) can be described by Figure 4.3. 

• Time in computation 

System System 
failure 1 failure k t=0 

Optimal 
action 
identified? 

Optimal 
action 
identified? 

Action 1 Action k 

Simulation Simulation 

Failure 
detection 

Failure 
detection 

Action 
identification 

Action 
identification 

Figure 4.3 'System failure detection' is an integral part of the whole 'remedial actions 

identification' process 
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From this figure we see that it is possible to have multiple system failure types for 

one initiating event and thus require a group of remedial actions to contain them. The output 

of this process then could be a series of actions along a time span instead of a single one-time 

action. This nature complicates the action identification task. 

In this figure it is clear that 'System failure detection' is an integral part of the 

'remedial actions identification' process, because: 

1) After a remedial action is designed for every single system failure, simulation 

based system failure detection is run to verify its effectiveness. The action should 

be effective (results in satisfactory system performance) and necessary (no less 

expensive action would have also been effective). This is an iterative procedure for 

every identified system failure in order to find the right action and its right amount. 

2) Initial simulation stops once it encounters the first system failure. And, multiple 

iterative procedures as in (1) have to be completed until all the system failures are 

prevented and a final safe system condition is reached by simulation at time TEND, 

which is the pre-specified long-term simulation termination time point. The whole 

process of simulating for a single initiating event is done in a ' back-and-forward ' 

manner, and involves 'system failure detection' and 'remedial action detection' 

alternatively. 

The time scale in Figure 4.3, from left to right, represents the sequence of 

computation effort. It does not necessarily represent, although usually it represents, the 

sequence of events conditions that happen to the power system. We prevent system failures 

one by one, but failure i+1 is not necessary to occur at a time later than failure i in the power 

system. Instead, failure i+1 can be the result of the effect of the actions identified for failure 

i, and its occurrence can be earlier than failure /, because those actions are executed at a time 

before failure i occurs. 
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4.3.2 Source inputs for remedial action identification 

The information basis for identifying remedial actions is provided by the simulation 

tool, which includes system failure type, relay actions that lead to this system failure, and the 

system abnormal condition triggering these relay actions (see Figure 4.2). 

System failure and System abnormal condition (see the list of terminology) have 

different roles during remedial action identification. System failure is the trigger of the action 

identification procedure. Since the ERS is designed for system-wide disturbances, only 

system failure is of concern. System abnormal conditions, although can, do not always lead 

to a large system failure, and cannot be used as a trigger for this purpose. System abnormal 

condition is the main input and is the basis of how to identify appropriate actions because the 

reason for system failure is relay actions, and the reason for relay actions is system abnormal 

condition. To prevent a system failure is to prevent the original system abnormal condition 

that causes the final failure at the first place (see Figure 4.2). 

All relay actions and their causing system abnormal conditions are stored by the 

simulation process. From these stored information we can trace back to find the original 

causing system abnormal condition, and provide it to the action identification unit as an 

input. 

A 
System 
failure type 

Failure-
causing 
relay action 

Original causing 
system abnormal 
condition 

Relay actions record 

Figure 4.4 Trace back to find the original causing system abnormal condition 

4.3.3 General action identification problem formulation 

Upon the identification of the specific system abnormal condition by the 'trace-back' 

process, some action is to be identified to contain this abnormal condition, as shown in 

Figure 4.5. This process is like the task for a traditional SPS logic designer. In this section, an 
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Abnormal 
condition 

Action 
Identification Action set 

Figure 4.5 Input and output of action identification units 

optimization formulation is established to represent this task. At this point, we assume only 

one system failure is in presence. 

Ideally, the general design problem faced by every SPS action designer can be 

formulated by the following optimization problem: 

Optimization problem formulation 

Objective: Min E(A) (4.1) 

Subject to: M(A) > £ 

Where, E represents the economic cost associated with the actions. 

A is an n x 1 vector representing the status/amount of each available action. 

M is the safety margin value. When a system failure happens, M < 0. 

f i s  the  lower  l imi t  fo r  sys tem safe ty  marg in .  

is the feasible value set for vector A. 

n is the total number of available actions in the system. 

A  =  [ a l ,  a 2 , . . . ,  a n ]  .  

Element ai (i = 1, 2,..., n) is the value/state of the z'th control action. The data type of 

at can be: 

• Real. For example, threshold setting changes. 

• Discrete. For example, remote load tripping. 

• Boolean. For example, shunt switching. 

And a value of 0 means 'action is not taken'. 

AsQ>A 
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Cost function expression 

Function E can be expressed as: 

e ( A ) =  x £,(«,) + r \  ï; 
i = 1 . V ' = 1 

where, is, is the effort/cost factor associated with the zth action. 

Ej(cii) = 0 if there is no economic cost associated with this action. For example, 

setting change. 

Ei(cii) = fccij if the economic impact is proportional to the action amount. For 

example, load shedding for loads with fix emergency bids (same price for different 

amount of load shedding). 

Efcii) is of more complicated form (nonlinear and/or discrete) for actions other than 

the above two types. For example, load shedding for loads with multi-tier emergency 

bids. 

Function I is a validation function, which is defined by: 

j { 1 if be B 
e 5' I 0 Otherwise 

R is a monotonically increasing function. It represents the unwillingness to take 

multiple actions. 

The objective function 

There are two criteria to achieve this minimization objective. The first criterion is to 

minimize the expected total economic cost, which is easy to understand. The second criterion 

is to minimize the number of actions chosen. The reason is that increased number of actions 

will increase the control complexity and corresponding uncertainties, thus causing security 

problems. 
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This formulation also forces the program to seek the most effective actions. Because 

ineffective action will make both term R and term 2E, very high since it cannot contain the 

system failure by its own, and it needs a large amount to produce working effect. 

The constraints 

There are two constraints in (4.1). The constraint with action A simply reflects system 

available actions: 

(pi is the feasible set of value at. Depending on the type of the action and the type of this 

value, the set can be a region for real numbers (real a, numbers), a set of discrete numbers 

(discrete aj numbers), or an on-off status {0,1} for Boolean values. 

In the other constraint, the safety margin M represents the system's security with 

regard to a potential system failure. This margin is defined as the distance to the 

corresponding relay triggering threshold. The 'Distance' is associated with relay 

characteristics. Different definitions are defined for different relay triggering modes. This can 

be associated with electric value (voltage, current, etc) and/or time value (the duration that a 

value is within the triggering zone). 

4.3.4 Remedial action identification procedure 

General analysis 

Formal optimization solution methods are generally not easily applied to the 

previously defined problem because M{A) has no analytic expression, and its evaluation is 

done by computationally intensive time domain simulations. We use heuristic procedures to 

solve this problem. There are three steps to the heuristic: 

1) Action types screening. At this step, only certain types of actions are retained for 

consideration according to specific system abnormal condition. The basis for 

making this screening is a general knowledge base regarding remedial action 

functions, which is shown later in this chapter. 
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2) Action candidates' identification. This step checks the availability of the action 

types identified from step 1 in the actual power system. With system topology 

information and automated search process, limited effective action candidates can 

be identified. 

3) Determining optimal action amounts and optimal action. This step computes the 

optimal action amount for each action candidate provided from Step 2. The 

optimal action is determined by comparing the costs of all action candidates. 

Other actions are stored in DDET as alternative actions. 

Steps 1 and 2 reduce the control variables; Step 3 finds the optimal solution. The 

three steps are illustrated in Figure 4.6. In [32] and [33], only the last step is implemented. 

The reason is that their initiating event set is fixed and corresponding action types can be 

identified offline. The only task online is to determine the action amount. The action 

identification method introduced here for ERS is clearly more general. Implementation of 

each step is described in the remainder of this chapter. 

Large 
variable 
set 

Specific 
action 

Very limited 
variable set 

Reduced 
variable 
set — 

Action 
candidate 
identification 

Action type 
screening 

Determine action 
amounts and the 
optimal action 

General 
knowledge base 
and expert inputs 

System topology, 
Action availability, 
Intelligent search. 

Brute force search, 
Gradient-guided 
search, 
Linear programming 

Figure 4.6 Three steps of optimal action identification 
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Stepl: Action type screening 

As stated above, with inputs of specific system abnormal condition, such as low bus 

voltages, the first step is to identify specific type of effective actions using general 

knowledge base. A table in [70] classifies system disturbances into four major classes - loss 

of generation, loss of demand, loss of transmission, and loss of transmission causing a system 

split. The possible impacts of each disturbance are enumerated. Also in the table are possible 

remedial actions, the time to implement them, and methods and system data required to 

determine remedial actions. While the structure of this table is good, the containment 

methods listed in the table are limited to only generation and load adjustment and network 

reconfiguration. In contrast, reference [11] provides a table with a broader array of remedial 

action types, as illustrated in 

Table 4.1. While the action set listed in this table is relatively complete, the 

classification of abnormal conditions is too broad for action identification purpose. The 

events listed in this table are the final outcome of system failures, rather than the abnormal 

conditions leading to the system failure. For example, an undesirable line trip could cause 

transient instability, voltage instability, cascaded line tripping, and even frequency instability 

(when a line trip isolates an amount of load or generation). And the abnormal condition 

causing this trip can be a severe overloading (causing the operation of an over-current relay) 

or system dynamic swing (causing an impedance relay undesirable operation). When we 

design remedial action, what we really need is the identification of the original abnormal 

condition causing the trip of the line, not just the final system failure type. 

Combined the advantages of these two tables from references and adding relay related 

terms, a new table is created, as shown in Table 4.2. The first row lists the relay actions, as 

well as the abnormal conditions leading to them, thus produce system failure. The first 

column lists the type of actions that we could use to mitigate the impact. By relating relay 

actions to system abnormal conditions, it is easier to identify effective action types from the 

relay actions records by the system detection software unit. 
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Table 4.1 Most used S PS actions to counteract power system instability phenomena 
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Transient instability X X X X X X 

Frequency instability 
Frequency diminution 
Frequency rise X 

X X X X X 

Voltage instability X X X X X X X X 

Cascade line tripping X X X X X 

Step 2: Action candidates identification 

With certain types of action identified, the task of this step is to identify existing 

control locations to serve as action candidates. This requires knowledge of specific power 

network information in terms of network topology and action location (see Figure 4.7). 

Tool Tool Tool 

Effective 
action types 

Action location 
and amount 

Remedial 
action 
candidates 

Automatic action search tool kit 

Figure 4.7 Action candidate identification process 

Qualified action candidates should satisfy the following requirement: 

1) Available for execution; 

2) Sufficiently effective for available executable amount. 
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Table 4.2 Action type selection guide 
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The automatic network action search is a tool kit that contains different search 

algorithms for different system abnormal conditions and remedial actions. There are many 

such tools in the kit. A user can develop their own tool according to their specific 

requirement. 

Examples of these tools follow: 

• Load shedding is one effective remedial action for relieving circuit overload. The 

most effective load can be identified by power flow sensitivity analysis. Loads to 

which the overloaded line flow is most sensitive are candidates. 

• For plant instability, we seek low cost measures, such as plant fast valving, 

dynamic braking, or series insertion. If these are not available, we consider 

generator-tripping. Some generators) at this plant must be dropped to maintain 

system synchronism. 

• For system instability, as detected by out-of-step condition across ties, we can 

design controlled islanding schemes to minimize total load loss. The automatic 

optimal islanding algorithm under development by some other researchers at ISU 

[71] can be utilized to find the optimal islanding schemes. 

• For under/over voltage problems, we first look for available shunt 

capacitor/reactor to switch in/off, because the cost is almost zero. If that is not 

available, we shed load for under-voltage problem in the low voltage area. 

According to the topology searching methods, there are two search modes: 

1) Breadth first search without direction suide 

This is the search method for part of nodal problems, where the action has the same 

qualitative effect in any direction. For example, if we seek a shunt switching for a low/high 

voltage problem at a node, we search from this node with a breadth-first method considering 

electric distance, but not direction, as shown in Figure 4.8. 

2) Directional search 

This is the search method for nodal problems where the action can have a different 

qualitative effect depending on the direction. For example, we want to shed some load to 

prevent an undesirable line trip caused by overload, so we search for loads at the direction of 
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the power receiving end, not just to find the closest load (see Figure 4.9). Otherwise, we may 

select an action that makes the situation worse. 

Abnormal 
•gjj. condition 

location 

# Action 
location 

Figure 4.8 Non-directional breadth-first action search 

System 
problem 
location 

Action 
location 

Figure 4.9 Directional action search 

Step 3: Determine the optimal action amount and optimal action 

Given a set of action candidates, the task of this step is to determine the optimal 

action amount for each action. After all the optimal amounts of actions are calculated, we can 

compare the costs associated with these actions and identify the action with least cost as the 

optimal solution for designated system abnormal condition. 

As introduced in Chapter 3, for non-optimal actions, the calculations done are still of 

value, because there actions are stored in DDET as alternative actions. An alternative action 

can be an optimal action in a future time, as the cost factors from power market change. Cost 

comparison is straightforward after optimal action amounts are identified. The focus of this 

section is to describe the method to find the optimal action amount. The process of 

determining the optimal amount for a candidate action is illustrated in Figure 4.10. 
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Not 
acceptable 
(too large or 
too small) 

Acceptable? 

Acceptable 

Begin 

New simulation 

Output the optimal amount 

Calculate the new safety 
margin 

Determine / adjust 
action amount 

Figure 4.10 Decision process for determining optimal action amount 

Every action candidate usually contains only one or two specific actions. At this time, 

as the number of specific action is fixed, we can ignore item R in function E. Then, the 

optimization problem becomes: 
n ' 

Minimize: E {A ' ) = E ; (a (. ) 
1 = 1 

Subject to: M(A') > e 

A' G <DA-

Now, M'is a small number, for example, 1 or 2, and Wis an n'xl vector. 

This simplified optimization problem can be solved by following methods: 
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1) Binary search 

This approach iteratively converges to a desired target margin by adjusting the 

action as a function of the difference between this target margin and the margin of the 

last simulation. When the feasible region is very limited (for example, with only one 

action or very limited discrete feasible options) and no good analytical form of 

function Mis available, this is a good and convenient approach. 

Here is an example. Assume that E(A) is a monotonically increasing function 

of A. Then, to minimize E is to minimize A. We can try some values of A by putting 

this action in the simulation program and then adjusting its value as a function of the 

resulting margin. If margin is too large, reduce costly action; otherwise, increase the 

costly action. This binary search process goes on until a certain accuracy of A is 

achieved, as shown in Figure 4.11. 

A, 

M(A) 

C e 

Figure 4.11 Binary search algorithm to find the optimum 

2) Direct analytical solution 

Sometimes function M is an explicit and known function of A. Suppose that 

M(A) is monotonically decreasing and Function E(A) is monotonically increasing 

with respect to A, we can find the optimal action amount at a specific point of M. We 

directly obtain the optimal action amount by solving equation: M(A) =e. One example 
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is: when we have an accurate and complete voltage-power nose curve for one load 

node, we can directly find the optimal load to shed in one step [39][48]. 

3) Gradient-based iterative method 

If at each point, the gradient information (sensitivities of E and M to A) can be 

obtained, a Gradient-based direct climbing algorithm can be used to find the 

optimum. Although the form of function E is likely to be simple, the form of M is 

always implicit. So, unlike the problem of nonlinear objective with linear constraints, 

which has most of its difficulty in dealing with the objective function, the difficulty 

with this nonlinear programming problem lies with the one nonlinear constraint on 

margin M(A). Correspondingly, while it should be easy to find the 'steepest' 

direction, it is hard to judge the boundary of the feasible region and to determine the 

step size to climb in order to keep every point within the feasible region. Under this 

circumstance, the gradient information of margin can be used, with some other 

heuristic rule, to judge good step sizes. In this optimum problem, the optimum will 

locate at the boundary of the feasible region. That is, the margin will be at its lower 

limit. 

If function E and M can be approximated by a second-order polynomial, the 

Newton method based climbing algorithm can be used. A larger step size can be used 

and the optimal can be obtained with fewer iterations. We can obtain this approximate 

second order information once we have at least three simulation runs, as the algorithm 

used in [69]. 

4) Alternative methods 

Some alternative methods can also be considered. These methods are provided 

here for completeness, and they are not tested in this work. 

(a) Interior point algorithm 

When function Mis in analytical form, we can use interior point algorithm as 

used in the optimal power flow problem [72]. That is to represent the inequality 

constraints in the object function with logarithmic form, having barrier parameters as 
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their weight. The original optimization problem becomes one without inequality 

constraint and can be solved by Lagrangian method. The barrier parameters need to 

be adjusted toward zero while solving this optimization problem iteratively by 

Newtown's method or Gradient method. 

(b) Solution by linear programming 

As we know, although function E is likely to be in a linear form, function Mis 

usually not. However, if we have sufficient sensitivity information at sufficient points 

(this is not always easy to obtain), we can approximate Mas a piecewise function of 

A. For example, assume that the optimization problem with two actions can be simply 

formed as below: 

Minimize: E(al, a2) = /, *al + f2 * a2 

S u b j e c t  t o :  M ( a i , a 2 ) >  e  

0  < a i < U i  

0 < % < C 6  

where: U j ,  U 2 ,  are the upper bounds of control 1 and 2 respectively. E is linear and/} 

and /? are constant factors. 

Now, divide aj and % into pieces and represent M with piecewise function. 

a i  = a n  + a i i  + -  +  aim 

a2 ~ a2\ a22 "• a2n 

M = 1X- -aij + Hk2j-a2j +C 

y'=i 7=1 

where C is a constant term. The new optimization problem is converted to a linear 

programming problem: 

Minimize: E(ax, a2) = fx- au +... + /,• alm + f2 • a2l + ... + f2 • a2„ 

Subject to: kn • au + ... + klm • alm + k2X • a2l +... + k2n-a2n >e-C 
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0  < a u  <  U n  

0 zS &lm — Uim 

0 < 02l < U21 

0 < Cl2n < U2n 

However, some additional constraints are necessary for this problem. There is 

a certain sequence of these segments: ay,/ can only be nonzero when a/,,./ is at its 

upper limit Uij.i. This is not easy to express by linear constraints. This can be 

automatically achieved if we add the following penalty term to the objective function: 

P = B 
m r i n r i 

ai> 1,1-1 _ ai,i-1 j+ a21^2,1-1 — °2,/-l J 
. i=2 i=2 

where B is a very big number so that if any term is nonzero in the summation term, P 

will be a very big number. The solution of the following linear programming problem 

should give the real optimum we need. The new complete new optimization problem 

is: 

Minimize: £(a, ,a2) = fx-an+... + /, • aXm + /2 • o21 +... + f2-a2n+P 

S u b j e c t  t o :  k n  •  a n  +  . . .  +  k l m  •  a l m  +  k 2 1  •  a 2 l  + . . .  +  k 2 n - a 2 n > e - C  

0 <an < Un 

0 5: Cllm — Uim 

0 <Ct2l < U21 

0 < a2„ < U2n 
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Once again, although this linear programming problem is easy to solve, to get this 

piecewise linear information we need the sensitivity information at many points, and 

this is not a trivial computation task for most cases. 

4.4 Summary 

This chapter introduced three major steps for a generalized intelligent action logic 

design process - initiating events selection, system failure detection, and remedial action 

identification. For remedial action identification, there are three steps involved - action type 

screening, action candidate identification, and optimal action amount determination. 

Corresponding algorithms are recommended for different steps. 
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5 AUTOMATIC ACTION LOGIC DESIGN DEMONSTRATION 
SYSTEM 

To illustrate the feasibility and the effectiveness of the automatic intelligent action 

logic design process proposed in Chapter 4, a demonstration system is constructed. 

Corresponding results are examined on a simple test power system. This demonstration 

system is a software-based package that implements steps 2 and 3 in this automatic process -

system failure detection and remedial action identification. Step 1, initiating events selection, 

will appear in the works of other ISU researchers. Their results, an initiating event set, can be 

passed to this software as its input. The two packages are constructed in one Visual C++ 

workspace and can easily exchange data. The execution file runs on Windows based PCs. 

5.1 System specifications and features 

This section provides the specifications and features of the software application 

designed to implement the ERS. The execution speed of this system is also reported. 

5.1.1 System specifications: 

Specifications are made in term of inputs, outputs, and margin setting. 

System input 

1) Power system data. This includes the following: 

• Steady state analysis data (system topology, buses, generations, loads, 

branches); 

• Dynamic data (generator parameters, exciter, governor, dynamic load); 

• Relay data (type and settings); 

• Available remedial actions data. 

2) Initiating event set. This can be received from the initiating events selection 

program. 
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3) Different operating conditions. This is provided to the program in terms of 

generation and load levels. 

System output 

1) Optimal remedial action (if applicable) for each initiating event in the initiating 

event set under the given operating condition. 

2) Alternative actions for each initiating event, if available. 

3) Simulation progress reports. This includes events sequences (relay actions, exciter 

limiter actions), action search trials, and system failure types. 

4) Time domain trajectory of specified values. 

5) CPU time consumed by each initiating event. 

Margin setting 

Safety margin lower limit is set to 5%. That is, after applying the remedial action, the 

failure triggering relay should not be triggered if we adjust its settings (e.g., triggering 

voltage for UVLS, triggering impedance for an impedance relay) by 5% towards the 

direction that is easier to trigger the relay. 

5.1.2 System features 

This demonstration system has the following features: 

1) Given initial operating condition and initiating event set, the entire remedial 

action logic design process is done automatically without human intervention or 

additional human inputs. 

2) A general relay action based system failure detection approach is used. This 

enables the automation of system failure detection process. 

3) Action type screening and action candidate identification is done automatically 

according to general knowledge and actual power system data. Although only a 

limited number of action choosing methods are developed, other methods can be 

integrated in the structure easily because of the open structure of this software. 

4) Optimal action amount search is done automatically by binary search (see Section 

4.4). 
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5) Relays are modeled to accurately capture relay actions and their effects on power 

system performance. 

6) Long-term simulation is implemented to detect long-term power system failures 

and thus provide action suggestions to the system operator that are appropriate for 

the long-term. 

7) Optimal remedial action is determined by considering the associated costs. 

Alternative remedial actions are also identified and stored for future use. 

8) System implements generator and control dynamic models, including exciter, 

governor, and dynamic load. 

9) Selected simulation snapshots are stored along with simulation process. A 

simulation can be backed-up (see Section 4.3) to one such snapshots for the 

purpose of inserting an action. Further simulation starts from this snapshot instead 

of time 0. 

5.1.3 Execution speed 

The executable file is run on PCs with Intel® Pentium® III Processor (500 M Hz). 

The test power system has 6 buses and 4 generators. For an uninterrupted 600-second 

simulation run, the average computation time is around 45 seconds. When a system failure is 

detected and remedial action is necessary, the total processing time for one initiating event, 

including simulation and action design, varies from 48 seconds (for an early stage system 

failure) to more than 200 seconds (for cases requiring multiple actions and thus more action 

trials). 

Sparse techniques ([73]-[76]) and network reduction ([77]) techniques are not used in 

this program due to labor constraint. The computation time would approximately increase 

proportionally with respect to the square of the size of the system. The simulator can be 

replaced by any faster commercial simulator once it is available. 

5.2 Program flowcharts 

The main program flowchart is outlined in Figure 5.1. The block 'remedial action 

identification process' in Figure 5.1 is expanded with great detail in Figure 5.2. 
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Figure 5.1 Demonstration system program flowchart 
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Figure 5.2 Remedial action identification process flowchart 
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5.3 Control models 

To properly model the power system, some controls are represented in the simulator. 

We generally choose relatively simple models for these controls so as not to become overly 

occupied with this task, but there is no reason why a full array of such models could not be 

provided, given the necessary investment in labor. 

Simplified governor model 

A simplified governor model from [10] is used. The block diagram is shown in Figure 

5.3. 

Speed Ref. + 

Speed droop Turbine 

Generator 

Figure 5.3 Simplified governor model 

Simple exciter model 

A simple exciter model for an alternator-fed SCR (silicon controlled rectifier) 

excitation system from [78] is used, as illustrated in Figure 5.4. 

±4.9 pu 

200 

Figure 5.4 A simple exciter model 
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Thermostatically controlled dynamic load model 

A simple model for thermostatically controlled loads from [10] is used, as shown in 

Figure 5.5. This type of load can exacerbate the system voltage problem during a long-term 

low voltage profile. 

oM'— 

Figure 5.5 A simple model for thermostatically controlled loads 

Relay models 

Due to the limitation on labor, relays modeled in this demonstration system do not 

compose a complete set of power system protective relays. These relays are modeled because 

they are known as the most problem-causing relays during power system large disturbances. 

Examples of relays not modeled in this software are R-Rdot relay, bus differential relay, 

Under-frequency load shedding relay, and generator out-of-step relay. These relays can be 

added to the simulator in the same manner if addition labor investment is available. 

Line impedance relay 

Impedance relay is widely used for transmission lines. The common practice 

in the United States has been to use separate distance units for the several protection 

zones [79]. In this demonstration system, Zone 1 protection is not modeled. The 

reasons are: (1) Zone 1 protection trips a line instantaneously after the detection of a 

fault. Even if this is an undesired operation, there is no time for a remedial action to 

respond and prevent this trip. (2) Based on the initiating event selection criteria, we 

assume that there is no failure from Zone 1 protection in post-initiating events. 

A typical setting for Zone 2 protection is about 120% of the impedance of the 

protected line, with a time delay of 0.3 to 0.5 seconds [10]. In this demonstration 

K-iGO 

0 
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system, Zone 2 protection is modeled. The setting is set to 120% of the impedance of 

the protected line, with a time delay of 0.5 seconds. A directional impedance 

characteristic [79] is used, as shown in Figure 5.6. 

Line characteristic 

>R 

Direction unit 

Figure 5.6 Directional impedance relay characteristic 

Line over-current relay 

Some utilities also use over-current relay in transmission line protection 

[59][79][80], In this work, over-current relays are modeled at selected lines with a 

setting of about 1.5 times of the maximum load. This type of over-current relay 

usually has time-inverse characteristics [79]. To model it, multiple setting-time pairs 

can be used. In order to simplify the model, one time delay of 5 seconds is used for 

approximately 1.5 times the maximum load setting. 

Generator over-excitation vrotection relay 

Over-excitation of a generator will occur whenever the ratio of the voltage to 

frequency (volts/ hertz) applied to the terminals of the generator exceeds 1.05 pu [81]. 

The relay detects high volts/hertz ratio and can have one or dual fixed time delays. It 

can also perform according to time inverse characteristic. In this demonstration 

system, a fixed time over-excitation relay is used with a setting of 120% volts/hertz 

ratio and a time delay of 5 seconds. 

Under-voltase load sheddim 

Normally, a UVLS will operate and trip a feeder circuit breaker when the 

input level decreases below a pre-set threshold for a time longer than a few seconds 
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[11]. According to [82], typical time delay is 3.5 to 8 seconds. Although load 

shedding is often initiated in steps, this demonstration system uses a one step load 

shedding to test the impact of this relay. Time delay is set to 5 seconds. 

Automatic shunt switching 

Like under-voltage load shedding, automatic shunt switching is a type of 

response-based remedial action [11]. One example can be found in [61]. An auto-

closing of a capacitor bank is modeled in this test system, which automatically switch 

in a capacitor when the voltage drops below 0.9 pu for 5 seconds. 

5.4 Test system description 

A 6-bus 4-generator power system is designed to test the effectiveness of the 

developed action logic design software. It is designed somehow to represent some long 

distance power delivery problems that have been observed in the western North America 

interconnection. The one-line diagram of this test system is shown in Figure 5.7. 

G 1 

1 9 o G 2 

2 

A 

N 

3 

s G 3 

Cap 1 
Load 2 

Figure 5.7 One-line diagram of the test power system 
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This is a simple test system. A large portion of the load is located at bus 6. Power 

flows from north to south. Lines 1-5, 2-5, 3-5, and 5-6 are long distance transmission lines. 

Loads at bus 5 and 6 are modeled with thermostatically controlled load model. When there is 

some line outage and the system is stressed, long-term voltage collapse is likely to occur. 

Under-voltage load shedding is equipped at bus 5 that sheds 20% of load at bus 5 when its 

voltage is lower than 0.9 pu for 5 seconds. At bus 6, a shunt capacitor will automatically 

switch in when the voltage is lower than 0.9 pu for 5 seconds. Because the voltage at bus 6 is 

always lower than that of bus 5, this auto-closing of shunt capacitor occurs earlier than the 

under-voltage load shedding. 

System data can be found in Appendix B, including system branch data, generator 

dynamic data, and relay settings. The dynamic data is set according to typical machine data 

from the Appendix D in [77]. Zone 2 impedance relay is modeled on every line. Over-current 

relay is modeled on line 1-5 and 2-5. All generators are modeled with over-excitation relay. 

UVLS and automatic shunt switching are modeled as mentioned above. In addition, a 

temporary UVLS relay is modeled at bus 6 with a setting of 0.88 pu and a delay of 5 seconds. 

This is based on an assumption that the load at bus 6 would be shed if the voltage falls below 

0.88 pu for 5 seconds. We made this assumption since most UVLS settings are about 0.9 to 

0.92 pu [82], a sustained voltage lower than 0.88 indicates that no more UVLS is available to 

bring the voltage back. And, the long duration low voltage can cause tripping of voltage 

sensitive equipment, including electric motors and computers [83]. Long-term low voltage 

will also cause abnormally high current and heating in stator and rotor of a motor [84]. This 

UVLS is a simplification to avoid further detailed load modeling and can provide an early 

indication of voltage collapse. Should more detailed load models and its protection become 

available, they should replace this UVLS to detect system voltage collapse. The economic 

costs for shedding load at buses 5 and 6 are set to of ratio 1:1. 

5.5 Simulation validation 

To validate the accuracy of the simulator of this demonstration system, test 

simulations are run on two simple power systems. The results are compared with that 
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generated by a commercial software package - PSS/E (Power System Simulator for 

Engineering) [85]. 

5.5.1 Validation on the Ontario Hydro 4-generator system 

At first a validation is done on a simplified 4-generator system. It is derived from an 

Ontario Hydro 4-machine system designed for fundamental studies of inter-area oscillations 

in power systems [86][87]. 

System description 

The one-line diagram of this test system is shown in Figure 5.8. System data can be 

found in Appendix A. 

1 

Q \ rl A 
G1 

G2 Q 
CapJ_ Cap 2 

Load 1 Load 2 

o 
G3 

Q G4 

Figure 5.8 Ontario Hydro 4-generator test system 

Simulation condition 

The original operating condition is shown in the power flow data in Appendix A. The 

initiating event is: at 0 second, a three-phase fault is applied to bus 5, and it is cleared at 0.1 

second. Generators are modeled classically [77]. Loads are modeled as constant impedance. 

The simulation time is 10 seconds. 

Test results 

Generator relative angle is chosen as the test value. Generator 1 is set as the reference 

generator, i.e., with angle equal to 0. Test results are shown in Figure 5.9. From the results 

we see that the demonstration system simulator generates a result that is very similar to 

PSS/E. 



www.manaraa.com

68 

Relative 
angle (°) 

Gen 2 
- Gen 3 

Gen 4 

-120 
0 1 2 3 4 5 6 7 0 9  1 0  

Time (S) 

a. Results from PSS/E 

Relative 
angle (°) 

Gen 2 
— Gen 3 

- - Gen 4 

Time (S) 

-100 

b. Results from demonstration system 

Figure 5.9 Simulation results comparison on the Ontario Hydro 4-generator system 
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5.5.2 Validation on the 4-generator test system 

A second validation is done on the test system shown in Figure 5.7, since this is the 

system we use to evaluation the demonstration software. The initiating event is: at 0 second, 

a three-phase fault is applied to bus 5, and it is cleared at 0.1 second. Generators are modeled 

classically and none of the controls listed in Section 5.3 are modeled, since they are 

inconsistent with the models in PSS/E. The simulation time is 10 minutes (600 seconds). 

Again, generator relative angle is selected as the test value. Generator 1 is selected as 

the reference generator. Test results of transient stage and the long-term stage are compared 

in Figure 5.10 and Figure 5.11 respectively. From the result we see that the simulator 

generates similar results as PSS/E for this test system during both transient and extended time 

frames. In addition, the fact that the simulator is stable for 10 minutes indicates that the 

integration method is numerically stable. 

5.5.3 Notes on long-term simulation 

PSS/E uses a Z form expression of the trapezoidal integration algorithm, an implicit 

algorithm [88], for long-term simulation [89]. The purpose is to increase simulation speed by 

larger time step while avoiding numerical instability problem [90]. 

Although implicit algorithms are usually used with larger integration step for power 

system simulation software to increase simulation speed [91], Euler integration method is 

used with this demonstration system, because of its simplicity, and because simulation speed 

is not a concern at this stage of research. Euler method is an explicit method [88]. To avoid 

numerical instability, a short time step should be used. In this program, time step is set as 

0.005 seconds, for this is much smaller than the smallest time constant of the simulated 

system. The numerical stability is verified by test results. 

5.6 Demonstration system test results 

For a given set of initiating events, and a set of different system configurations and 

operating conditions, the demonstration system generates the remedial actions for every 
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Figure 5.10 Transient simulation result comparison for the test system 
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Figure 5.11 Long-term simulation result comparison for the test system 
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initiating event under each system operating condition. A DDET tree is then constructed for 

each operating condition. 

There are two types of remedial actions. When the system failure is of short-term 

nature (less than T seconds), the remedial action is an automatic instant action. Otherwise, 

the remedial action is provided to the operator within T seconds following the disturbance. 

We have selected T=40 seconds based on the response time of an experienced system 

operator, but this time could be chosen based on some other criteria if appropriate. 

For a given system operating condition, the tree construction process is completely 

automated. The result of each tree is shown in this document in the format of a table, with 

each row representing a branch from the root node. All the control models listed in Section 

5.3 are implemented during the tests. Generators are represented by E" model [77]. The code 

implementing this model is translated from a MATLAB code created for an ISU course 

project. The result of translated code exactly matches that of the original MATLAB code. 

The accuracy of the original MATLAB code was verified by the results generated by many 

individuals who worked independently on the same project. 

5.6.1 Initiating events 

In this test, a fixed set of initiating event is used. Automated selection of initiating 

events was designed as part of another ongoing dissertation that will interface with this work 

through an event list. The fixed initiating event set used in the test includes most N-l 

initiating events and some multi-outage initiating events. A total of 17 initiating events are 

included, and are listed in the tables shown in following sections. Only symmetric 3-phase 

faults may be represented in the simulator at this point in time. 

Faults are cleared at 0.1 seconds, which is within the normal clearing time range for 

transmission systems [79]. However, according to NERC Planning Standard [1], 3-phase 

faults with delayed clearing (due to stuck breaker or protection problem) should be included 

when considering category D disturbances, and as a result, delayed fault clearing is 

sometimes studied in normal transmission planning practices [92]. Therefore one 

contingency in the event list has a fault clearing time of 0.2 seconds. 
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5.6.2 Case 1: Normal operating condition 

A computation is done for a normal system operating condition (normal loading and 

no line out of service), which is not a stressed condition. This condition is summarized in 

Table 5.1. The computation shows that, under this operating condition, all 17 initiating 

events result in acceptable system performance, i.e., no system failure is detected during the 

simulated period (10 minutes). The computation time for each initiating event varies from 42 

to 51 seconds. The average computation time is 47 seconds. 

Table 5.1 Normal operating condition (Case 1) 

Bus No. Generation (MW) Load (MW) 
1 1071.25 -

2 814.64 -

3 711.60 
4 476.91 
5 — 1200.0 
6 - 1800.0 

5.6.3 Case 2: A more stressed system operating condition 

A more stressed operating condition is obtained by increasing the system loading 

according to Table 5.2. The resulting event tree is shown in Table 5.3, where it is observed 

that voltage collapse occurs for events 11-17. This is due to the additional power delivered 

across the transmission path. Table 5.3 also lists the actions identified by the ERS, which are 

different amounts of load shedding. It is illuminating to examine one of these cases, event 14, 

in more detail. This event models outage of two lines. When no action is taken, a voltage 

collapse occurs as shown in Figure 5.12 and Figure 5.13. 

Table 5.2 System operating condition for Case 2 

Bus No. Generation (MW) Load (MW) 
1 1071.25 -

2 814.64 -

3 1020.80 
4 889.99 
5 - 1200.0 
6 - 2500.0 
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Table 5.3 Remedial actions for Case 2 

No. 
Event at t=0 s Event at t=0.1 s 

(t=0.2 s for Init. 
event No. 2) 

System failure type Remedial action CPU 
time 
(s) 

1 
3 phase fault at one line 
between 3-5 near bus 5. 

Trip the faulted line 
between 3-5. 

No problem. — 47 

2 
3 phase fault at one line 
between 3-5 near bus 3. 

Trip the faulted line 
between 3-5. 

No problem. — 47 

3 
3 phase fault at one line 
between 2-5 near bus 5. 

Trip line 2-5. No problem. — 
45 

4 
3 phase fault at one line 
between 1-5 near bus 5. 

Trip the faulted line 
between 1-5. 

No problem. — 
44 

5 
3 phase fault at one line 
between 1-5 near bus 1. 

Trip the faulted line 
between 1-5. 

No problem. — 44 

6 
3 phase fault at one line 
between 2-5 near bus 2. 

Trip line 2-5. No problem. — 45 

7 
3 phase fault at one line 
between 1-2 near bus 1. 

Trip line 1-2. No problem. — 46 

8 
3 phase fault at one line 
between 1-2 near bus 2. 

Trip line 1-2. No problem. — 46 

9 
3 phase fault at one line 
between 4-6 near bus 6. 

Trip the faulted line 
between 4-6. 

No problem. — 
46 

10 
3 phase fault at one line 
between 4-6 near bus 4. 

Trip the faulted line 
between 4-6. 

No problem. — 46 

11 
3 phase fault at one line 
between 5-6 near bus 6. 

Trip the faulted line 
between 5-6. 

Voltage collapse at 

about 575 s a 

Shed 3.1% load at 
bus 6 at 40 s. 237 

12 
3 phase fault at one line 
between 5-6 near bus 5. 

Trip the faulted line 
between 5-6. 

Voltage collapse at 
about 572 s 

Shed 3.1% load at 
bus 6 at 40 s. 

237 

13 
Trip two of the three 
lines between 5-6 

None. Voltage collapse at 
about 5 s 

Shed 15.6% load at 

bus 6 at 0.1 s.b 
153 

14 
3 phase fault at one line 
between 5-6 near bus 5. 

Trip the faulted line 
between 5-6 and one 
line between 3-5. 

Voltage collapse at 
about 140 s 

Shed 9.4% load at 
bus 6 at 40 s. 169 

15 
3 phase fault at one line 
between 1-5 near bus 5. 

Trip line 1-5 and 
one line between 3-5 

Voltage collapse at 
about 109 s 

Shed 9.4% load at 
bus 6 at 40 s. 

140 

16 
3 phase fault at one line 
between 2-5 near bus 5. 

Trip line 2-5 and 
one line between 3-5 

Voltage collapse at 
about 98 s 

Shed 9.4% load at 
bus 6 at 40 s. 

141 

17 
3 phase fault at one line 
between 5-6 near bus 6. 

Trip the faulted line 
5-6 and one line 
between 4-6. 

Voltage collapse at 
about 229 s 

Shed 3.1% load at 
bus 6 at 40 s. 193 

a. This is the time that the simulator indicates the voltage collapse by a low voltage at bus 6. See 
Section 5.4 for detail. Real system oscillation will occur at a time later than this time. 

b. In this test, event based remedial action is assumed to take place 0.1 seconds after detection of the 
initiating event for the short-term problem. For all the test cases in this work, a slightly different action speed 
gives similar test result. 
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Figure 5.12 Short-term response for initiating event 14, Case 2 without action 
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Figure 5.13 Long-term response for initiating event 14, Case 2 without action 



www.manaraa.com

76 

Because of the severity of the initiating event (outage of two lines), power delivery 

capability is largely weakened and a low voltage profile appears on the southern buses (buses 

4,5,6). Automatic capacitor switching takes place at bus 6 at about 15 seconds. However, 

system voltage continues to drop. Since no remedial action is taken, armed under-voltage 

load shedding at bus 5 shed 20% of its load at about 400 seconds. This is still not enough to 

save the system. A system-wide oscillation eventually occurs at about 580 seconds, as seen in 

Figure 5.13. After applying the identified action - shedding 9.4% load at bus 6 at 40 seconds, 

satisfactory system performance is achieved as shown in Figure 5.14. 

Initiating event 13 is a more severe case, and a performance violation is indicated 

much earlier at about 5 seconds. As we see from Figure 5.15, the voltage collapses and 

unstable behavior occurs at about 200 seconds. After applying the identified remedial action 

- load shedding at bus 6 at 40 seconds, acceptable system performance is achieved for 

initiating event 13, as indicated in Figure 5.16. The difference of this action from that of 

initiating event 14 is that this action will be taken as an automatic remedial action instead of 

a suggestion to the operator because the early violation could not be mitigated otherwise. 

5.6.4 Case 3: Maintenance configuration with normal load 

In this case, one of the two lines between buses 1 and 5 is out of service for 

maintenance. The system load is of normal level as indicated in Table 5.4. However, unit 1 

generation must be reduced due to the line outage in order to avoid a steady-state overload. 

Therefore, unit 3 generation must be increased to compensate and satisfy the demand. 

Table 5.4 System operating condition for Case 3 

Bus No. Generation (MW) Load (MW) 
1 551.55 -

2 458.57 -

3 1229.60 -

4 723.05 
5 - ! 200.0 
6 — 1700.0 
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Figure 5.14 System response for initiating event 14, Case 2 with action 
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Figure 5.15 System response for initiating event 13, Case 2 without action 
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Figure 5.16 System response for initiating event 13, Case 2 with action 

After the automatic action logic design, the result shows that only initiating event 2 is 

dangerous and needs remedial action, as shown in Table 5.5. This system failure was caused 

by a protection undesirable operation. Voltage problems do not occur in this case. Figure 

5.17 and Figure 5.18 illustrate the impedance magnitude and angle, respectively, seen from 

either end looking into line 3-5 (the impedance relays on this line were disabled to create 

these curves). From these plots, we see that for a time duration longer than 0.5 seconds, the 

impedance observed by the Zone 2 relays at both ends of line 3-5 falls into the triggering 

zone. This would trip line 3-5 0.5 seconds thereafter and isolate a large amount of generation 

at generator 3. A system failure then occurs at a time about 0.5 seconds. 

Table 5.5 Remedial action for Case 3 

No. Event at t=0 s Event at t=0.2 s System failure type Remedial action 

2 

3 phase fault at one 
line between 3-5 
near bus 3. 

Trip the faulted 
line between 3-5. 

System separated by false-trip 
of the other line between 3-5 
by Zone 2 impedance relays at 
0.51 s. 

Block the otherwise-
would-falsely-trip relays 
for 0.5 s starting at 0.3 s. 

Load Shedding 

Capacitor Switching 

Bus 4 
Bus 5 
Bus 6 
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Figure 5.17 Observed impedance magnitudes by line 3-5 for initiating event 2, Case 3 
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The identified remedial action is to block both relays for 0.5 seconds starting from the 

time of 0.3 seconds. Then the time duration from relay activation point (0.8 s) to the time of 

relay exiting the triggering zone (0.95 s) is 0.15 seconds, which is less than the delay of these 

two relays - 0.5 seconds. The system integrity is maintained. This action design is consistent 

with the 'transient blocking logic for parallel lines' discussed in IEEE transmission line 

protection standard [60]. Without relay modeling, this relay undesirable operation would 

remain "hidden" until this particular disturbance occurred. 

5.6.5 Case 4: Maintenance configuration with decreased generation at unit 3 

This case is similar to Case 3, with a slightly higher load level. However, output of 

unit 3 is decreased relative to Case3, as indicated in Table 5.6. The generated tree is shown in 

Table 5.7. The initiating events are the same as described in Table 5.3. 

Table 5.6 System operating condition for Case 4 

Bus No. Generation (MW) Load (MW) 
1 708.45 -

2 615.35 -

3 916.65 
4 825.73 
5 — 1200.0 
6 - 1800.0 

In the tree shown in Table 5.7, for some initiating events, there are alternative actions 

available. The reason is that, these system failures are caused by overload on both line 1-5 

and 2-5, and alleviation of these overloads can be achieved by shedding load at either bus 5 

or bus 6. To determine the best action, corresponding costs are compared. Cost factors for 

bus 5 and bus 6 are set to of ratio 1:1 in this computation. 

Of all the 7 problematic initiating events in this tree, initiating event 13 has a similar 

voltage collapse problem as it does in Case 2. The other 6 initiating events result in overload 

at either line 1-5 or 2-5. We take initiating event 3 as an example. As shown in Figure 5.19, 

when no action is taken, the over-current relay at line 1-5 will operate at about 21 seconds. 
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Table 5.7 Remedial actions for Case 4 

No. System failure type Optimal action Alternative action 

1 No problem. -

2 No problem. — 

3 
System separated by tripping of the line 1-5 by 
over-current relay at 21.2 s. 

Shed 28% load at bus 5 
at 0.2 s 

Shed 22% load at bus 6 
at 0.2 s 

4 
System separated by tripping of the line 2-5 by 
over-current relay at 21.2 s. 

Shed 28% load at bus 5 
at 0.2 s 

Shed 22% load at bus 6 
at 0.2 s 

5 
System separated by tripping of the line 2-5 by 
over-current relay at 25 s. 

Shed 28% load at bus 5 
at 0.2 s 

Shed 22% load at bus 6 
at 0.2 s 

6 
System separated by tripping of the line 1-5 by 
over-current relay at 25 s. 

Shed 28% load at bus 5 
at 0.2 s 

Shed 22% load at bus 6 
at 0.2 s 

7 No problem. - -

8 No problem. - -

9 No problem. - -

10 No problem. - -

11 No problem. - -

12 No problem. - -

13 
Voltage collapse at time about 305 s. Shed 3.1% load at bus 6 

at 40 s 
— 

14 No problem. - -

15 
System separated by tripping of the line 2-5 by 
over-current relay at 26 s. 

Shed 22% load at bus 6 
at 0.2 s 

Shed 41% load at bus 5 
at 0.2 s 

16 
System separated by tripping of the line 1-5 by 
over-current relay at 26 s. 

Shed 22% load at bus 6 
at 0.2 s 

Shed 41% load at bus 5 
at 0.2 s 

17 No problem. - -

After applying the identified remedial action, the relay would not operate. The result is 

shown in Figure 5.20. This gives the operator time to re-dispatch system generation without 

islanding the system. The relay setting and system configuration for this example could be an 

undesired setting experienced by practice [59]. 
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5.6.6 Case 5: Maintenance configuration with stressed operating condition 

Compared with Case 4, this case has a higher load level and the generation from unit 

3 is increased, as shown in Table 5.8. The generated tree is shown in Table 5.9. The problems 

occurring under this case include all the problem types experienced by cases 2, 3, and 4. The 

impedance undesirable operation problem experienced with initiating event 2 here is similar 

to that of Case 3. The only difference is that, here, only the relay at the remote end (end 5) 

would operate. Problems with initiating event 13 to 16 are of the same nature as that in Case 

2. Problems with initiating event 3 to 6 are similar as that in Case 4. However, under this 

scenario, the time frame of this over-current operation is much longer than that in Case 4, and 

thus more phenomena are involved. 

Table 5.8 System operating condition for Case 5 

Bus No. Generation (MW) Load (MW) 
1 655.95 -

2 562.89 -

3 1229.60 -

4 829.7 
5 - 1200.0 
6 — 2000.0 

We consider initiating event 3 as an example. As shown in Figure 5.21, when no 

action is taken, the over-current relay trips line 1-5 at about 93 seconds. The reason for the 

current jump at about 88 seconds is the automatic shunt switching occurs at bus 6. While this 

is necessary to increase the voltage at bus 6, it also increases the load current at bus 6. This 

effect is similar to that of the Under Load Tap Changer's (ULTC) behavior during a long-

term voltage collapse where a voltage regulating action also increases current flow. After 

applying the identified action (shed 9.4% load at bus 6 at 40s), the operation of relay is 

prevented, as illustrated in Figure 5.22. 
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Table 5.9 Remedial actions for Case 5 

No. System failure type Optimal action Alternative action 

1 No problem. - -

2 
System separated by tripping of the other line between 
3-5 by Zone 2 impedance relays at 0.51 s. 

Block this Zone 2 relay 
for 0.5 s. 

3 
System separated by tripping of the line 1-5 by over-
current relay at about 93 s. 

Shed 9.4% load at bus 6 
at 40 s. 

Shed 22% load at 
bus 5 at 40 s. 

4 
System separated by tripping of the line 2-5 by over-
current relay at about 91 s. 

Shed 9.4% load at bus 6 
at 40 s. 

Shed 22% load at 
bus 5 at 40 s. 

5 
System separated by tripping of the line 2-5 by over-
current relay at about 90 s. 

Shed 9.4% load at bus 6 
at 40 s. 

Shed 22% load at 
bus 5 at 40 s. 

6 
System separated by tripping of the line 1-5 by over-
current relay at about 92 s. 

Shed 9.4% load at bus 6 
at 40 s. 

Shed 22% load at 
bus 5 at 40 s. 

7 No problem. - -

8 No problem. - -

9 No problem. - -

10 No problem. -

11 No problem. -

12 No problem. - -

13 
Voltage collapse at about 58 s. Shed 9.4% load at bus 6 

at 40 s. 
— 

14 
Voltage collapse at about 176 s. Shed 9.4% load at bus 6 

at 40 s. 
— 

15 
Voltage collapse at about 156 s. Shed 9.4% load at bus 6 

at 40 s. 
— 

16 
Voltage collapse at about 159 s. Shed 9.4% load at bus 6 

at 40 s. 
— 

17 No problem. -

5.6.7 Case 6: Maintenance configuration with over-stressed operating condition 

Compared with Case 5, this case has a much higher load level, as shown in Table 

5.10. This is not an acceptable operating condition as bus 6 voltage (0.96 pu) is well below 

its required minimum level, e.g. 0.98 pu. This case is shown here to test the performance of 

the demonstration system under an over-stressed operating condition. The generated tree is 

shown in Table 5.11. According to this table, all initiating events require remedial action. 

Some actions have extremely high cost. This situation is N-1 insecure and therefore would 

require preventive action by the operator. 
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Figure 5.21 Current observed by line 1-5 for initiating event 3, Case 5 without action 

16 
Current 
(pu) 15 

14 

13 

12 
Relay triggering threshold 

11 

10 

9 

Load shedding at Bus G 
8 

7 

6 100 0 200 300 500 400 600 
Time (s) 
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Table 5.10 System operating condition for Case 6 

Bus No. Generation (MW) Load (MW) 
1 1072.31 -

2 504.26 -

3 1229.60 -

4 889.06 -

5 - 1200.0 
6 - 2400.0 

Table 5.11 Remedial actions for Case 6 

No. System failure type Optimal action Alternative action 

1 
Voltage collapse at about 149 s Shed 9.4% load at bus 6 

at 40 s. 

2 
Voltage collapse at about 150 s Shed 9.4% load at bus 6 

at 40 s. 

3 
System separated by tripping of the line 1-5 by over-
current relay at about 5.4 s. 

Shed 41% load at bus 6 
at 0.2 s. 

Shed 91% load at 
bus 5 at 0.2 s. 

4 
System separated by tripping of the line 2-5 by over-
current relay at about 5.4 s. 

Shed 41% load at bus 6 
at 0.2 s. 

Shed 91% load at 
bus 5 at 0.2 s. 

5 
System separated by tripping of the line 2-5 by over-
current relay at about 5.3 s. 

Shed 41% load at bus 6 
at 0.2 s. 

Shed 91% load at 
bus 5 at 0.2 s. 

6 
System separated by tripping of the line 1-5 by over-
current relay at about 5.3 s. 

Shed 41% load at bus 6 
at 0.2 s. 

Shed 91% load at 
bus 5 at 0.2 s. 

7 
System separated by tripping of the line 1-5 by over-
current relay at about 186 s. 

Shed 16% load at bus 5 
at 40 s. 

Shed 10% load at 
bus 6 at 40 s. 

8 
System separated by tripping of the line 1-5 by over-
current relay at about 185 s. 

Shed 16% load at bus 5 
at 40 s. 

Shed 10% load at 
bus 6 at 40 s. 

9 
Voltage collapse at about 530 s Shed 3.2% load at bus 6 

at 40 s. 
— 

10 
Voltage collapse at about 530 s Shed 3.2% load at bus 6 

at 40 s. 
— 

11 
Voltage collapse at about 240 s Shed 3.2% load at bus 6 

at 40 s. 
— 

12 
Voltage collapse at about 240 s Shed 3.2% load at bus 6 

at 40 s. 
— 

13 
Voltage collapse at about 5 s Shed 22% load at bus 6 

at 0.1 s. 

14 
Voltage collapse at about 27 s Shed 16% load at bus 6 

at 0.2 s. 

15 
System separated by tripping of the line 2-5 by over-
current relay at about 5.6 s. 

Shed 38% load at bus 6 
at 0.2 s. 

Shed 90% load at 
bus 5 at 0.2 s. 

16 
System separated by tripping of the line 1-5 by over-
current relay at about 5.6 s. 

Shed 38% load at bus 6 
at 0.2 s. 

Shed 90% load at 
bus 5 at 0.2 s. 

17 
Voltage collapse at about 107 s Shed 9.4% load at bus 6 

at 40 s. 
— 
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5.7 Result analysis 

Specific cases and system problems have been analyzed in individual cases. In this 

section we take a global look at the entire set of results via Table 5.12. In the table, each row 

represents one operating condition case, and each column represents one initiating event. 

Cells are classified into 4 categories as shown in the note just below the table. Types 

1,2, and 3 represent the occurrence of system failure requiring remedial action. Among 

these, only type 3 system failure can be captured by the traditional SPS logic design process 

and be prevented. For the cases tested in this work, only 3 out of 41 system failures are of 

type 3. This result shows how the ERS system could dramatically increase the system safety 

for certain cases. 

Case # 

Table 5.12 Overview of test results 

Initiating event # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
1 
2 
3 m 
4 m m m m 
5 
6 m m m m m m 

——^ 

1. System failure caused by relay operation during post-initiating event. (20 

occurrences) 

2. System long-term voltage collapse. (18 occurrences) 

3. Transient voltage collapse. (3 occurrences) 

4. System is safe under this initiating event. 

5.8 Conclusion 

This demonstration system is an automatic program. Given an operating condition 

and a list of initiating event, this program constructs a tree including necessary remedial 

actions automatically. The processes of system failure detection and remedial action 
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identification are also done automatically. This automated process is the core feature that 

makes the ERS online application feasible. 

Numerical results on the test system shows the importance of including relay models 

and long-term simulation in ERS simulator. Alternative actions are also provided for some 

cases, as it is necessary where the power market operation is in place. Results also show the 

effectiveness of the ERS action logic design process. For the tested system, the ERS system 

can capture and thus prevent over 10 times the system failures as traditional SPS logic design 

process. 

1 Possible action points are the time points at which an identified action can be taken. For example, it can be a 
very short time after an initiating event is detected for transient problem, or a reasonable long time after the 
initiating event that the system operator could take suggested action. 

2 See Section 4.3.2. 
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6 KEY STEPS AND ISSUES IN ERS IMPLEMENTATION 

There are some key steps involved in implementing ERS. In this chapter we provide 

guidelines for implementing these key steps, and we recommend applicable algorithms. 

Important implement issues are also addressed. 

6.1 Computation for forecasted conditions 

Advanced SPS in [31]-[35] perform security analysis based only on the system 

current operating condition. However, in a high-risk future period the system is more 

vulnerable and needs more time for DDET construction. To account for this problem, ERS 

constructs trees in advance when necessary. That is, the ERS begins the construction process 

according to forecasted high-risk operating conditions. This can give the ERS enough time to 

prepare a tree for future use when the high-risk period comes. 

Risk assessment methods for power system are addressed in [93]. The high-risk 

period here refers to time of severe weather or over-stressed system configuration and 

operating condition. The risk is high during these periods because more initiating events 

could lead the system to failure with a higher impact value, and the probabilities of initiating 

events are higher. The increased values of both terms (probability and impact) in producing 

system risk cause a higher system risk. 

As shown in Figure 6.1, after a high-risk period is identified, the first thing is to check 

with the database to see whether a tree based on this high-risk condition exists. If no 

satisfactory existing tree found, new computation should be conducted to prepare a tree of 

sufficient size for the identified high-risk future period. Before starting the computation, 

there are two tasks to be done to determine the time and CPU(s) to perform this computation. 

Lead-time for forecasted computation 

Determination of the lead-time for the forecasted computation is an important 

decision-making problem. If the computation starts too early, the information available is 

highly uncertain and so the forecasting is uncertain as well. On the other hand, if the 

computation starts too late, the time remaining may not be enough for a complete solution of 
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Figure 6.1 Computation based on forecasting 

the targeted problem. Thus, we must optimize the selected lead-time in order to obtain a 

desired accuracy (via minimizing forecasting error) yet complete the computing task. 

Allocation of computational resources 

Given that available computation resources are limited, we need to allocate it between 

current and future tasks. How much computational power to dedicate to each of them 

depends on the readiness of the current tree in comparison to that of the future tree. 

Although this is an important problem, we will not further address it here. We point it out, 

however, by doing so we strengthen the ability of future researchers to extend this work. 

6.2 Task scheduling in a distributed computation system 

6.2.1 Objective 

After the step of initiating events selection comes the step of event queuing, where we 

must answer the question: "with all these initiating events, what sequence should be followed 



www.manaraa.com

91 

to analyze them? Which one to analyze next?" The answer to this question is based on 

maximization of the ERS readiness. The readiness index is introduced in Section 3.6. In 

short, this index represents of what portion (in probability) of all the potential catastrophic 

events the ERS has analyzed. 

6.2.2 Simple task scheduling algorithm 

Tasks with time constrains are called real-time tasks and requires appropriate 

scheduling method. Typical real-time task has requirements on the earliest start time, 

completion deadline, pertaining resources, and synchronism with other tasks. Task 

scheduling can be either preemptive or non- preemptive [94]. In non-preemptive scheduling, 

one task is not interrupted by other tasks. Non-preemptive scheduling has a lower scheduling 

overhead compared with preemptive scheduling. Non-preemptive scheduling is solved by 

heuristics [94]. 

In this work, we use non-preemptive scheduling for simplification, and then further 

simplify the problem by not considering the above-mentioned hard time constrains and the 

resource requirements other than CPUs. The objective of this simplified scheduling problem 

is to maximize the number of processed tasks completed in a given amount of time and to 

maximize the number of processed tasks at any particular time. 

For this scheduling problem, the known information includes: 

• Number of tasks. 

• Number of processors (CPU). 

• Processing time for each task. 

The goal is to find a heuristic algorithm such that it completes as many tasks as possible in a 

given time. The output of the task-scheduling problem includes: 

• The assigned processor for each task. 

• For tasks assigned to the same processor, the sequence the tasks should be 

processed. 

Short-processing-time-first strategy 

This is a greedy algorithm [94]. This algorithm assigns an unprocessed task with the 

least processing time to a processor whenever a processor becomes available. This algorithm 
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can assure that at the period before the end of the task-scheduling problem, the number of 

processed tasks approximately achieves the maximum. However, it is also possible that time 

to complete all the tasks is unnecessarily long as shown in Figure 6.2- a. The effect of this 

becomes more influential as the number of processors increases, and it becomes less 

influential as the number of tasks increases. 

CPU 1 

CPU 2 

CPU 1 

CPU 2 

a. Short-processing-time-first strategy b. Long-processing-time-first strategy 

CPU 1 

CPU 2 

c. Hybrid strategy 

Figure 6.2 Comparison of different task scheduling strategies - illustration 

Long-processing-time-first strategy 

This algorithm assigns an unprocessed task with the longest estimated processing 

time to a processor whenever a processor becomes available. This algorithm usually 

completes all tasks in a time shorter than the short-processing-time-first algorithm, but it 

tends to complete fewer tasks early on, as shown in Figure 6.2-b. 

The advanced SPS introduced in [33] uses this strategy for task scheduling. It is 

effective there because the number of initiating events it considers is very limited and its 

objective is to complete all tasks in an assigned time of 5 minutes. The ERS, however, has a 

very large initiating event set, and its goal is not only to complete all of them in a given time, 

but also to complete as many as possible at any given time. Based on the observation of these 

two algorithms, a hybrid strategy that incorporates the advantages of these two algorithms 

can be developed. 
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Hybrid scheduling strategy 

This strategy works in the following way. Before actually assigning tasks to 

processors, we initially schedule the tasks in a 'virtual' way using the long-processing-time-

first algorithm, and record which task would be processed by which processor. Then, for 

each processor, we rank its tasks using the short-processing-time-first algorithm. Having this 

information, we assign the tasks to the dedicated processor in the re-ranked order. The result 

of this hybrid strategy is close to the result of ' Short-processing-time-first' strategy in the 

early part of the time period and is the same as the result of the 'Long-processing-time-first' 

strategy at the end of the time period, as shown in Figure 6.2- c. A numerical result of the 

comparison of these three strategies is shown in Figure 6.3. This test assumes that there are 

30 tasks and 9 processors. Task length varies from 40 seconds to 300 seconds. 

Completed 
number of 
tasks 25 

20 

15 

10 

5 

0 
• 100 200 300 400 500 600 700 BOO 

Time (s) 

Figure 6.3 Comparison of different task scheduling strategies - test result 

For ERS, the processing time for a task (one initiating event) is not unknown a priori. 

However, it is possible to obtain reasonably good estimates. Suppose that the system has run 

Short first 
Long first 
Hybrid 



www.manaraa.com

94 

for some time, say, 6 months. Most events in the initiating event set should have appeared in 

some previous initiating event set and been processed under a different but similar operating 

condition. In general, the processing time for one event under different but similar operating 

conditions has some consistency, at least in a relative manner. 

As an example, the initiating event processing times for test cases in Chapter 5 are 

listed in Table 6.1. Even for these 5 dramatically different cases we can observe a good deal 

of processing time consistency. For example, for a given condition, all processing times for 

initiating events 3 to 6 are similar; times for initiating event 1, 2, and 7 to 10 are similar; 

times for initiating events 11 and 12 are usually longer than initiating event 17; initiating 

events 13 to 16 are more likely to cause system failure and then need a long time for 

processing. When we actually seek this estimation, we use only similar operating condition, 

which would give much more consistency compared with this example. 

Table 6.1 Initiating event processing time in seconds for Case 1 to 5 

Initiating event # 
Case # 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 47 47 46 45 45 46 47 47 47 47 51 50 47 47 42 42 47 
2 47 47 45 44 44 45 46 46 46 46 237 237 153 169 140 141 iv.t 
3 43 44 42 41 41 42 43 43 43 43 47 47 43 44 38 39 43 
4 43 43 265 257 256 264 43 43 43 43 47 46 185 43 212 224 43 
5 43 43 273 265 264 273 43 43 43 43 46 46 139 169 140 145 43 

Additional simulations are performed to investigate the influence of error in 

processing time prediction on the result of different scheduling methods. Two examples are 

given in Figure 6.4 and Figure 6.5. As before, this test assumes that there are 30 tasks and 9 

processors, and task processing time varies from 40 seconds to 300 seconds. In the figures, 

solid lines are expected number of tasks completed using estimated task processing time to 

schedule, and the dotted lines are actual number of tasks completed considering estimation 

errors. Long-processing-time-first scheduling is not included because its performance is poor. 

In this test, actual processing time for each task is selected from a normal distribution having 

mean equal to the estimated time and variance of 10 and 50 seconds, respectively, for the two 

cases. This provides a random imitation in the actual completion time for each task. From the 

result we conclude that, for this particular case, predicting the completion time works well 
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when the variance is 10 seconds, as indicated by the close proximity of the curves 

representing the cases with and without uncertainty, respectively. The estimation becomes 

meaningless when the variance is 50 seconds - two dotted lines are very close to each other, 

which means that the actual result with this uncertainty would be very independent of the 

scheduling strategy used. 

6.2.3 Task scheduling with probability consideration 

Given the fact that there are an extremely large number of initiating events to assess, 

it is not enough to simply minimize the time because it is not practical to attempt to assess all 

of them. So we need a basis for scheduling the sequence in which the initiating events are 

assessed. The fundamental concept on which our scheduling scheme is based is that we 

attempt to be as prepared, or as ready, as possible within a given amount of time. This 

concept is the underlying thought behind our goal to maximize the readiness index, which is 

the ratio of total probability of assessed initiating events to the total probability of all events 

in the probability space. 

Two observations simplify implementation of this goal: 

• Precise probabilities of rare events are not available, but it is possible to assess the 

order in magnitude of rare event probabilities. For example, we may classify a 

rare event probability as of order 10"2 or 10"3. 

• The ratio of the maximum processing time to the minimum processing time of a 

single event usually does not exceed 10. 

From these facts we conclude: If we divide initiating events into groups according to their 

probability orders, for the events in one group, even the event with longest processing time 

should be processed before the event in the lower probability group having the least 

processing time. 

Thus, we extend the simple task-scheduling problem to fit the need to maximize the 

'probability readiness ' : 

Step 1: Divide all the events in the initiating event set into groups by their probability 

orders. Events in higher probability groups are to be scheduled before events 

in lower probability groups. 

Step 2: In each group, apply the algorithm for simple scheduling problem. 
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Figure 6.4 Task scheduling with time uncertainty, variance equal 10 s 
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Figure 6.5 Task scheduling with time uncertainty, variance equal 50 s 
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For groups that we are sure we can finish, we use hybrid scheduling strategy to finish them 

with least time. For later groups that we may only finish part of them within the given time, 

we use either hybrid or short-processing-time-first strategy to finish as many tasks as 

possible for the time given. 

6.3 Using trajectory sensitivity for determining optimal action 

amount 

Trajectory sensitivity applications in power systems can be found in [69][95][96]. It 

is also a good tool to determine the optimal action amount for ERS system, since most 

problems are caused directly by a system trajectory passing through a relay-triggering zone. 

As discussed in Section 4.4, sensitivity information is useful for finding the optimal action 

amount quickly. Although the trajectory sensitivity technique is not implemented in the 

demonstration system, separate tests are performed to verify its feasibility. One example is to 

be presented below. Simulations in this section are obtained from PSS/E software. 

System and initiating event description 

A 179-bus WSCC system is used as the test power system. The system one-line 

diagram is shown in Figure 6.6. The initiating event examined is as follows: At time 0, a 3-

phase fault occurs on line 99-81 close to bus 99; at time of 0.1 second, line 99-81 is tripped. 

At the same time, generator 36 is tripped to maintain the system stability, as the system 

would otherwise lose synchronism. Also occurring at this time is the tripping of a shunt 

capacitor at bus 85 to prevent the possible transient over-voltage. This capacitor tripping 

turns out to cause more problems - transient voltage dips at load bus 85. The bus 85 voltage 

is shown in Figure 6.7. 

As required by NERC/WECC (Western Electricity Coordinating Council) planning 

standards [97], for category B and C initiating events [1], transient voltage dip should not 

exceed 20% for more than 20 to 40 cycles at load buses. Here we assume that this would 

require that the voltage dip should not fall below 0.8 pu at bus 85 for over 0.4 seconds. In 
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Figure 6.7 one can see that the voltage continuously falls below 0.8 pu. This causes a 

violation of the WECC reliability criteria. To prevent this voltage dip violation, load 

shedding at bus 85 during transient disturbance is taken as a remedial action. 

Figure 6.6 WSCC 179-Bus system 
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Figure 6.7 Transient voltage dip at bus 85 without load shedding 

Determine optimal load shedding amount using trajectory sensitivity 

Voltage trajectory sensitivity with respect to load shedding amount is needed to 

determine the optimal action amount. This sensitivity can be calculated from an analytical 

method (including numerical calculation if necessary) [98]. However, it is also possible to 

adopt the elementary approach of two computer runs, one for nominal and one for changed 

parameters [98]. 

For this test case, we already have one simulation result - 0% load shedding. The 

result of Figure 6.7 shows that the voltage level below which the voltage falls for exactly 0.4 

seconds is 0.71 pu. In order to get the sensitivity value, we need a second simulation result. 

So we repeat the simulation but shed the whole load at bus 85 at 0.1 seconds in order to 

obtain the sensitivity information. The result is shown in Figure 6.8. 
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Figure 6.8 Transient voltage dip at bus 85 without 100% load shedding 

Suppose that Va(t) is the voltage trajectory obtained by shedding La% load at bus 85, 

then Va(t) can be expressed by a trajectory sensitivity value: 

Equation (6.1) 

where: V/(t) is the voltage in Figure 6.7; 

S(t) is the trajectory sensitivity factor that can be calculated from the two simulation 

runs according to: 

f(') = 
100%-o% 

Equation (6.2) 

where, V2O) is the voltage in Figure 6.8. 



www.manaraa.com

101 

By simple algebra calculations and low voltage duration detection, the critical point is 

found: The voltage would fall below 0.8 pu for 0.4 seconds when the load shedding level is 

46.83%. The predicted corresponding voltage trajectory is shown in Figure 6.9. This 

sensitivity calculation time is negligible compared with time domain simulation, since only 

algebraic calculations are involved. And, unlike simulations, this sensitivity calculation does 

not increase as the system size increases. 

To test the accuracy of this prediction, a simulation run is conducted with 46.83% 

load shedding. The result is shown in Figure 6.10. The result shows that the voltage falls 

below 0.806 pu for 0.4 seconds. Assuming our goal is to achieve 0.01 pu accuracy, the 

optimal action amount is found by the first trial. That is, only one additional simulation is run 

before the critical point is identified (another simulation is necessary for verification). For 

convenience, the sensitivity predicted curve is also shown in Figure 6.10. 

Determine optimal load shedding amount using binary trial 

As a comparison, we use the binary search (see Section 4.4) method to search this 

critical point again. The searching procedure is shown in Table 6.2. The result shows, for an 

error tolerance of 0.01 pu, 4 additional simulation runs are necessary to reach the solution. 

For this case, the sensitivity based method is at least 2 times as fast as the traditional binary 

search method. 

Table 6.2 Determine optimal action amount by Binary Search Method 

Trial No. Load shedding amount (%) Voltage that covers 0.4 seconds (pu) 
1 50.0 0.812 
2 25.0 0.767 
3 37.5 0.789 
4 43.8 0.799 
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Figure 6.9 Voltage curve with 46.83% load shedding by sensitivity prediction 
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Figure 6.10 Voltage curve with 46.83% load shedding by simulation 
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Summary 

Generally speaking, sensitivity information gives a very good direction and step size 

for adjusting the action amount, and thus usually reaches the solution with fewer simulations. 

This effect is not very significant when the options are discrete, but for continuous control, 

the efficiency improvement of sensitivity is dramatic. 

When more than 2 simulation runs are available, the sensitivity technique can be 

extend to include a second order term as in Equation 6.3. This will increase the efficiency of 

this method when the relation between the trajectory and the sensitivity parameter is highly 

nonlinear [69]. 

»;(,) = r, ( f )+ ^W (4%)' Equation(6.3) 

6.4 Coordination issues 

6.4.1 Coordination between response-based action and event-based action 

The most common response-based remedial actions are UFLS and UVLS. Response-

based actions can act as either a last line of defense after an event-based action, or as an 

integrated part in a defense plan. The settings of these load-shedding relays are designed by 

offline calculation based on certain assumptions regarding operating conditions and once set, 

typically are not adjusted. However, after the execution of event-based actions, some 

assumptions on operating conditions may no longer be valid, making the UFLS or UVLS 

settings inappropriate. For example, UFLS that use rate of frequency change need 

information about the system inertia for calculating the settings, but the system inertia will 

change after generator tripping from event-based actions. As a consequence, some 

coordination should be carried out between the response-based action and the event-based 

actions. 

Reference [99]-[101] report on an adaptive load-shedding scheme. They suggest 

acquisition of online information to adjust the settings of load-shedding scheme. Basically, 

system inertia (generator tripping), generation reserve, and system topology (islanding) can 

influence the settings. The ERS designed in this work should be able to send signals to those 
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response-based SPS and change their settings continuously according to current system 

condition and designed event-based action logics. 

6.4.2 Coordination between existing traditional SPS action and the ERS decision 

suggestion 

During the ERS simulation, existing automated SPS action should also be modeled in 

the same manner as protective relays. Without considering the automated action by 

traditional SPS, suggestions to the operator may be ineffective or even problematic, further 

exacerbating poor system performance. As a lesson learned from the midair crash that 

occurred in Germany on July 2, 2002 [102], conflicting warnings/suggestions from an 

automatic device and from a human being can result in catastrophic consequences. 

6.4.3 Coordination between different engineer groups 

As a result of the increased scope of ERS compared with SPS, a larger group of 

engineers will be involved in ERS development and implementation tasks. ERS vendor, EMS 

vendor, protection engineers in utilities, and system operations engineers in utilities will all 

play important roles. Without good coordination from a higher management level, efforts 

from different groups would be weakened. 
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7 CONCLUSIONS AND FUTURE WORK 

7.1 Contribution of this work 

For modern power systems, catastrophic cascading events still cause huge losses to 

the economy and society. The ERS system proposed in this work is capable of capturing 

most of these cascading events and defending the power systems against them. The most 

significant contributions of this work are summarized in what follows. 

A system design with significant advantages 

An emergency response system is designed. This design defends the power system 

much more effectively than what is currently in place (traditional SPS): 

1) It defends power systems under a wider range of system configurations and 

operating conditions; 

2) It defends power systems against a larger number of initiating events, including 

catastrophic cascading system disturbances; 

3) It defends power systems against more types of system failure, including 

protective relay operation caused system failure and long-term system 

instabilities, which are the main contributors of large system disturbances. 

This system design also enable use of real-time power market information, which is a crucial 

feature providing that the selection of actions to mitigate poor post-initiating performance 

may be done based on a balance between the cost of the action and its effectiveness. 

A generalized automated remedial action logic design process 

This work generalized the basic remedial action design features in such a way so as to 

make what has heretofore been highly application-specific technology - the SPS action logic 

design - into an automated and intelligent decision process. This contribution is important, 

because it is the fundamental enabler for the ERS, making it effective in an emergency 

scenario where response must be very fast. This contribution is also important because it 
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serves to encapsulate, in a formalized way, the SPS design process; as a result it will be 

useful to SPS designers in reflecting on and improving upon what they do. 

Demonstration system construction 

A demonstration software system is constructed to verify the effectiveness and 

feasibility of ERS. Large amount of labor was spent on building the basic simulation tool. 

The main feature of this system includes: 

• Relay models and long-term simulation are implemented to detect protective relay 

operation cause system failure and system long-term instability; 

• Remedial action logic design for multiple initiating events is processed 

automatically without human intervention; 

• Alternative actions are also identified to make the system adaptive to power 

market practice. 

Test results show that ERS is much more effective than traditional SPS and its 

implementation is feasible. 

Other implementation issues 

Key implementation issues are studied in this work and corresponding advance 

algorithms are suggested. In particular, event queuing by task scheduling algorithms and 

optimal action amount determination by trajectory sensitivity techniques are demonstrated 

with examples. 

7.2 Future work 

A complete ERS system is a comprehensive system, including both hardware and 

software, with cooperation between different human sources. There is still significant work 

remaining before an ERS is realized. This work is summarized in what follows. 

1. Software design 

There is significant work necessary to complete other function blocks illustrated in 

Figure 3.2, the core of which is identified below. 
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a) Forecasting: This is to predict the high-risk future period so that a computation for 

this period can be started in advance. A good method is needed to effectively 

predict these high-risk periods, and to determine a good lead-time for this early 

computation. 

b) DDET database management: After the ERS operates online for some time, the 

available DDET data volume is large. A challenging work is to develop a good 

management system for using this large storage so that the search time for a 

certain action is not adversely impacted by the amount of DDET available. 

c) State estimation: State estimation function in the energy management system 

provides ERS with real-time power system operating condition. The accuracy of 

the state estimation function is critical because it directly determines the output of 

ERS, the remedial actions. The current accuracy of state estimations is good 

enough for monitoring purpose. But improvement is necessary if it is for automatic 

remedial action design purpose. 

2. Action candidate identification 

Although this dissertation has significantly developed the action candidate 

identification procedures, there are still two aspects that need further development. 

a) System control models: This includes all control devices on generators, lines, 

transformers, and loads, including relays. This dissertation only implemented 

limited controls due to labor constraint. Realization of ERS would require accurate 

modeling on all controls for accurate action identification. 

b) Automatic action search tool kit: This work implements a limited set of action 

search tools, which include load shedding for overload and under-voltage problem, 

shunt switch for low voltage problem, and impedance relay blocking for 

impedance relay undesirable operation. Other items in Table 4.2 needs further 

efforts to implement. 

3. Other issues 

This work mainly develops software logic, which is the core of the ERS design. 

However, the following issues require significant work as well. 
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a) Hardware design: This dissertation proposed a centralized design for 

implementing the ERS (see Section 3.5). To build a reliable hardware system to 

implement this design requires the expertise from computer engineers. 

b) Communication issues: The ERS will communicate with other devices to collect 

and report real-time information. A standard reliable communication (both 

hardware and software) needs to be developed to implement ERS. 

c) Source information availability: The continuous good performance of the ERS 

depends on the constant inputs of accurate power system model from system 

model engineers. Certain standards and guidelines should be established to ensure 

a constant update of the system model used by the ERS. 

It would also be beneficial to analyze the possibility of implementing the framework 

of the ERS to defend the power system at restoration stage. There, 'initiating event' for the 

system would be system restoration switching sequence instead of system faults. Besides 

relay modeling, automatic restoration of loads should also be modeled. Difficulties to be 

overcome are: estimation of cold load to pick up, predicting a longer series of system events, 

and suggesting optimal restoration switching sequence. 

7.3 Conclusions 

The motivation behind this work is that there is little or no decision-support tools for 

control room operators to use in identifying early and effective actions when facing fast 

developing system-wide disturbances, and as a result, initiation of such disturbances is very 

likely to result in high consequences. The goal of this work is to develop a power system 

emergency response system to provide effective decision support during the early stages of a 

large system disturbance in order to mitigate its impact. 

The innovative design of the ERS system provided by this work defends power 

systems against system-wide disturbances. The key of the success is the ability of predicting 

a large set of system disturbances and automatically (and thus rapidly) identifying optimal 

remedial actions. Test results from a demonstration system verify the effectiveness and 

feasibility of the ERS system. 
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APPENDIX A. ONTARIO HYDRO 4-GENERATOR SYSTEM 
DATA 

Following data are in PSS/E format. 

Power flow data: 

0 100.0 / FRI, MAR 08 2002 12:19 
100.0 

1 1AAR1GEN1' 230 . 0 2 0.00 0. 00 1 0 1. . 0300 45.96 
2 'AAR1GEN11 230. . 0 2 0.00 0. 00 1 0 1. . 0041 35.09 
3 1AAR1GEN1' 2 3 0  . 0 3 0.00 0 . 00 1 0 1. . 0300 0 . 00 
4 •AAR1GEN1' 230, . 0 2 0.00 0. 00 1 0 1. . 0036 -9.89 
5 1LOADLOA11 230. .0 1 0.00 2. 235 1 0 0. .9555 25.98 
6 1LOADLOA21 230. .0 1 0.00 2 . 580 1 0 0. .9522 -18.32 

5, '1 1 1 ,1, 1, 1, 1241. 00, 100. .0, 0.0 0.0, 0.0, 
6, '1 1 1 ,1, 1, 1, 1699. 00, 100. .0, 0.0 

' 
0.0, 0.0, 

1 , 1, 790, .00, 101.65, 0.033 
2 , 1, 790. .00, 500.00, 0.033 
3 , 1, 719. • 94, 97.98, 0 . 033 
4 , 1, 740 . .00, 500.00, 0 . 033 

1 2 1 0, . 002500 0. .025000 
2 5 1 0 , .001000 0. .010000 
5 6 1 0 . . 022000 0. .220000 
3 4 1 0. .002500 0. . 025000 
4 6 1 0. .001000 0. .010000 

0 
0 
1 0 0.00 0.00 1 

0 
0 
0 
0 
0 
0 
0 
0 

Dynamic data: 

1 1GENCLS1 1 
2 'GENCLS' 1 
3 'GENCLS' 1 
4 'GENCLS1 1 

58.50 45.0 / 
58.50 45.0 / 
58.50 45.0 / 
58.50 45.0 / 
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APPENDIX B. DEMONSTRATION SYSTEM TEST DATA 

System branch data: (in pu, use system base MVA: 100 MVA) 

No. From Bus To Bus ID R X B 

1 1 5 1 0.004 0.04 2.5 

2 1 5 2 0.004 0.04 2.5 

3 2 5 1 0.004 0.04 2.5 

4 1 2 1 0.000 0.01 0.0 

5 3 5 1 0.004 0.04 2.5 

6 3 5 2 0.004 0.04 2.5 

7 5 6 1 0.002 0.02 2.0 

8 5 6 2 0.002 0.02 2.0 

9 5 6 3 0.002 0.02 2.0 

10 4 6 1 0.002 0.02 1.0 

11 4 6 2 0.002 0.02 1.0 

Dynamic data for the 4 generators*: 

ID D Xd Xq XI Xd' Xq' Xd" Xq" Tdo' Tq0' Td«" Tq0" H Tj r 

1 12.0 1.8 1.7 0.15 0.25 0.25 0.18 0.18 6.0 0.15 0.03 0.15 3.0 6.5 0.001 

1 12.0 1.8 1.7 0.15 0.25 0.25 0.18 0.18 6.0 0.15 0.03 0.15 3.0 6.5 0.001 

1 1 2 . 0  1.8 1.7 0.15 0.25 0.25 0.18 0.18 6.0 0.15 0.03 0.15 3.0 6.5 0.001 

1 12.0 2.1 2.1 0.15 0.25 0.25 0.34 0.33 5.0 0.5 0.04 0.07 3.0 6.5 0.0016 

* These values are pu values based on machine base MVA. Base MVA for 

Generator 1 to Generator 3 is 1300 MVA. Base MVA for Generator 4 is 850 

MVA 
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System relay data: 

No. Type Location Settings 

1 Impedance Line 1-5, ID 1, End 1 Z=0.05pu, T=0.5 s 

2 Impedance Line 1-5, ID 1, End 5 Z=0.05pu, T=0.5 s 

3 Impedance Line 1-5, ID 2, End 1 Z=0.05pu, T=0.5 s 

4 Impedance Line 1-5, ID 2, End 5 Z=0.05pu, T=0.5 s 

5 Impedance Line 2-5, ID 1, End 2 Z=0.05pu, T=0.5 s 

6 Impedance Line 2-5, ID 1, End 1 Z=O.O5pu, T=O.5 s 

7 Impedance Line 1-2, ID 1, End 1 Z=0.0125pu, T=0.5 s 
8 Impedance Line 1-2, ID 1, End 2 Z=0.0125pu, T=0.5 s 

9 Impedance Line 3-5, ID 1, End 3 Z=0.05pu, T=0.5 s 

10 Impedance Line 3-5, ID 1, End 5 Z=0.05pu, T=0.5 s 

11 Impedance Line 3-5, ID 2, End 3 Z=0.05pu, T=0.5 s 

12 Impedance Line 3-5, ID 2, End 5 Z=0.05pu, T=0.5 s 

13 Impedance Line 5-6, ID 1, End 5 Z=0.025pu, T=0.5 s 

14 Impedance Line 5-6, ID 1, End 6 Z=0.025pu, T=0.5 s 

15 Impedance Line 5-6, ID 2, End 5 Z=0.025pu, T=0.5 s 

16 Impedance Line 5-6, ID 2, End 6 Z=0.025pu, T=0.5 s 
17 Impedance Line 5-6, ID 3, End 5 Z=0.025pu, T=0.5 s 
18 Impedance Line 5-6, ID 3, End 6 Z=0.025pu, T=0.5 s 

19 Impedance Line 4-6, ID 1, End 4 Z=0.025pu, T=0.5 s 
20 Impedance Line 4-6, ID 1, End 6 Z=0.025pu, T=0.5 s 

21 Impedance Line 4-6, ID 2, End 4 Z=0.025pu, T=0.5 s 

22 Impedance Line 4-6, ID 2, End 6 Z=0.025pu, T=0.5 s 
23 Over-current Line 1-5, ID 1, End 1 1=1 lpu, T=5 s 

24 Over-current Line 1-5, ID 2, End 1 1=11 pu, T=5 s 

25 Over-current Line 2-5, ID 1, End 2 1=1 lpu, T=5 s 

26 Over-excitation Generator 1 V/Hz=1.2, T=5 s 

27 Over-excitation Generator 2 V/Hz=1.2, T=5 s 

28 Over-excitation Generator 3 V/Hz=1.2, T=5 s 

29 Over-excitation Generator 4 V/Hz=1.2, T=5 s 
30 UVLS Load at Bus 5 V=0.9pu, 20% load, T=5 s 

31 
Auto capacitor 
bank switching 

Bus 6 V=0.9pu, B=3.0, T=5 s 
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